Direkt zum InhaltDirekt zur SucheDirekt zur Navigation
▼ Zielgruppen ▼

Humboldt-Universität zu Berlin - Lebenswissenschaftliche Fakultät - Fachgebiet Urbane Ökophysiologie der Pflanzen

Neue Veröffentlichung am FG

Herppich, W.B.; Maggioni, M.; Huyskens-Keil, S.; Kabelitz, T.; Hassenberg, K. Optimization of Short-Term Hot-Water Treatment of Apples for Fruit Salad Production by Non-Invasive Chlorophyll-Fluorescence Imaging. Foods 2020, 9, 820.

 

Herppich, W.B.; Maggioni, M.; Huyskens-Keil, S.; Kabelitz, T.; Hassenberg, K. Optimization of Short-Term Hot-Water Treatment of Apples for Fruit Salad Production by Non-Invasive Chlorophyll-Fluorescence ImagingFoods 2020, 9, 820. https://doi.org/10.3390/foods9060820

 

Abstract

For fresh-cut salad production, hot-water treatment (HWT) needs optimization in terms of temperature and duration to guarantee a gentle and non-stressing processing to fully retain product quality besides an effective sanitation. One major initial target of heat treatment is photosynthesis, making it a suitable and sensitive marker for HWT effects. Chlorophyll fluorescence imaging (CFI) is a rapid and non-invasive tool to evaluate respective plant responses. Following practical applications in fruit salad production, apples of colored and of green-ripe cultivars (‘Braeburn’, ‘Fuji’, ‘Greenstar’, ‘Granny Smith’), obtained from a local fruit salad producer, were hot-water treated from 44 to 70 °C for 30 to 300 s. One day after HWT and after 7 days of storage at 4 °C, CFI and remission spectroscopy were applied to evaluating temperature effects on photosynthetic activity, on contents of fruit pigments (chlorophylls, anthocyanins), and on various relevant quality parameters of intact apples. In ‘Braeburn’ apples, short-term HWT at 55 °C for 30 to 120 s avoided any heat injuries and quality losses. The samples of the other three cultivars turned out to be less sensitive and may be short-term heat-treated at temperatures of up to 60 °C for the same time. CFI proved to be a rapid, sensitive, and effective tool for process optimization of apples, closely reflecting the cultivar- or batch-specificity of heat effects on produce photosynthesis.

Keywords: fruit qualitypostharvest physiologyprocessingpigmentsheat stress