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ABSTRACT 
 
 

This paper presents a dynamic theory of structural change in which functional change 
driven by technological change and transactional change open opportunity for change in 
scale and scope of enterprises.  Implementation of change in scale and scope of 
enterprises is constrained by initial state conditions including resource endowments, 
access to credit, and regulation.  In the presence of such constraints, the paper motivates 
the existence of thresholds that introduce cusps in the optimal paths of control variables.   
 
The evolution of enterprises is considered within the context of a multiple enterprise firm 
that encompasses discrete and continuous processes that are interdependent on 
intermediate goods as well as their production of environmental effects.  Response to 
opportunity is governed as well by adjustment costs and incomplete markets. The 
specification is consistent with manufacturing, crop and animal agriculture, as well as 
service-oriented enterprises.  Potential for structural change is considered within the 
context of changes in prices, regulation, and technological change.  We discuss 
management options that maximize uncertain profit over the planning horizon subject to 
changing price regimes, regulations, and existing and new technology.   We consider 
incentive as well as quota type policy to regulate environmental effects.  While the model 
is one of optimal control, the presence of constraints opens the opportunity for timing of 
adjustment and constrains adjustment.  We derive thresholds for change and show their 
principal determinants.  Based on this specification, we derive an indicator of flexibility 
as well as real options style valuation of the benefits of postponement of adjustment.   
 
The model’s specification is sufficiently complex as to preempt analytical consideration.  
Instead, we specify a numerical example and present illustration of the implications of the 
model based on numerical computation.   The example illustrates both unbundling of 
enterprises as conditions encourage reduction in scope as well as formation of relational 
links to recover what might be viewed as economies-of-scale by specialized enterprises 
spawned by unbundling.  The example also illustrates conditions necessary to induce a 
shift from traditional grazing animal operations integrated with crops to intensive feed 
lots.  Within this context, shift in scale, specialization, and scope of enterprises is 
illustrated.   
 
To conclude, the utility of model is considered within general contexts to analyze the 
structural implications of change in economic conditions such as shifts in price regimes, 
change in process technology, change in IT technology, and changes in institutional rules.   
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INTRODUCTION 
This paper presents a dynamic theory of structural change in which functional change in 
returns to scale impact scale of enterprises.  Change in returns to scale resulting from 
technological change or change in transaction methods are viewed as possible origins of 
change in returns to scale.  Production choices are constrained by initial state conditions 
including resource endowments and technological productivity.   

A deep stream of literature has recognized the central role that returns to scale 
play in growth dynamics.  Solow (1956) and Diamond (1965) specified decreasing 
returns to scale over the reproducible factors of production and, from all points except the 
origin, found a steady state to which all trajectories converge.  With constant returns to 
scale this result melts away leaving the origin as the only steady state and all trajectories 
converging to balanced growth paths.  While this result have been found attractive to 
some, Solow’s (1997) critique that the result may be of little import given the unlikely 
occurrence of constant returns to scale in the real world.   In the endogenous growth 
literature, increasing returns to scale result in stable, interior steady states.  One class of 
these results in unbounded growth while another set results in decay to the origin, a 
process that has been labeled as the poverty trap, see Shell (1966, 1967) or Azariadis and 
Drazen (1990).   One source of increasing returns to scale in reproducible factors noted in 
the literature has been the presence externalities.  Lucas (1988) and Romer (1990) exploit 
this specification to motivate constant returns to scale in societal level technology despite 
decreasing returns to scale in private technologies and, thereby, motivate endogeneous 
growth that is balanced.   In such a case, an indeterminancy results in a continuum of 
equilibria, see e.g. Harrison (2001), Harrison and Weder (2000), or Benhabib and Farmer 
(1996).  As Harrison (2001) notes, the existence of multiple equilbria has important 
implications such as self-fulfilling expectations that generate aggregate fluctuations.   She 
shows that even small external effects can lead to such indeterminancy.  While this 
discussion is of great interest, it has a narrow scope of focus failing to consider structural 
implications of returns to scale. 
 A second stream of literature has considered the role of returns to scale evolution 
and the dynamics of industrial structure.  Baumol (1983, 1988) noted in a theory of 
contestible markets how the extent of increasing returns to scale determines industrial 
structure.  Evidence of this role is found throughout the economy, see Gustavasson 
(2002).  Winter, et al. (2006) present a model of dynamics of industrial structure based on 
heterogeneous firms and continuous, stochastic entry.  In a review of empirical evidence, 
they note high heterogeneity, continuous and dynamic disequilibrium, and rapid turnover 
of SMEs.  Detailed studies are limited that consider evidence of the role of scale or 
returns to scale on the structure of industries.  Loyland and Ringstd (2001) consider the 
structural effects of scale-augmenting technical change on the Norwegian dairy industry 
and estimate the number of farms would have been reduced by 85% through full 
exploitation of scale economies that expanded optimal scale from 1972-1996 in Norway.   
Huffman and Evenson (2001) found empirical evidence that expanding farm size in the 
US from1953-1982 contributed positively to total factor productivity.   
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In this paper, we consider how change in returns to scale impacts a network of 
enterprises.  To proceed, we specify an interesting, though small network of enterprises 
that encompass production processes that are interrelated through intermediacy of inputs 
as well as by their production of externalities.  We specify the externality as controllable 
through its application as an intermediate input and consider two cases for its 
management.  In the first, we allow decentralized decisions focused on profits to manage 
the externality while in the second we introduce an optimal tax.   

The set of enterprises encompasses discrete and continuous processes that are 
interdependent on intermediate goods as well as their production of externalities that can 
be thought of as environmental effects.  Response to opportunity is governed as well by 
adjustment costs and incomplete markets. The specification is consistent with 
manufacturing, crop and animal agriculture, as well as service-oriented enterprises.  
Potential for structural change is considered within the context of changes in returns to 
scale.   While the model is one of optimal control, the presence of constraints opens the 
opportunity for timing of adjustment and constrains adjustment.   The model’s 
specification is sufficiently complex as to preempt analytical consideration.  Instead, we 
specify a numerical example and present an illustration of the implications of the model 
based on numerical computation.   Within this context, the dynamic implications of the 
evolution of scale economies is illustrated.   
 
MODEL 
The evolution of enterprises is considered within the context of a multiple enterprise firm 
that encompasses discrete and continuous processes that are interdependent on 
intermediate goods as well as their production of environmental effects.  Response to 
opportunity is governed as well by adjustment costs and incomplete markets. The 
specification is consistent with manufacturing, crop and animal agriculture, as well as 
service-oriented enterprises.  Potential for structural change is considered within the 
context of changes in prices, regulation, and technological change.  We discuss 
management options that maximize uncertain profit over the planning horizon subject to 
changing price regimes, regulations, and existing and new technology.   We consider 
incentive as well as quota type policy to regulate environmental effects.  While the model 
is one of optimal control, the presence of constraints opens the opportunity for timing of 
adjustment and constrains adjustment.  We derive thresholds for change and show their 
principal determinants.  Based on this specification, we derive an indicator of flexibility 
as well as real options style valuation of the benefits of postponement of adjustment.   

The model’s specification is sufficiently complex as to preempt analytical 
consideration.  Instead, we specify a numerical example and present illustration of the 
implications of the model based on numerical computation.   The example illustrates both 
unbundling of enterprises as conditions encourage reduction in scope as well as formation 
of relational links to recover what might be viewed as economies-of-scale by specialized 
enterprises spawned by unbundling.  The example also illustrates conditions necessary to 
induce a shift from traditional grazing animal operations integrated with crops to 
intensive feed lots.  Within this context, shift in scale, specialization, and scope of 
enterprises is illustrated.   

Our model incorporates four interrelated processes as described in Figure 2. In 
each case, nonperishable products are assumed to be stored if not sold or directly 
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consumed as an intermediate input.  Thus, we specify a continuous process (G) produces 
output that can be further transformed and allocated to the market, stored, or used directly 
as an intermediate good as an input to a continuous process (D). We suppose a batch 
process (K) can be implemented in any shop  j   of a set "shops" that occupy or utilize a 
limited resource (e.g. floor space, land area, ..). The shops are differentiated by their 
productivity. Each K process jointly produces pollution  j

ine ,  as well as a product  j
iky ,   

that can be marketed, stored, or used in an intermediate input  fx   to the continuous 

process (D). The D process is specified as producing a perishable product  yd   that is 
instantaneously marketed and an intermediate product  my    generated by a subsidiary 
process (M) that may be allocated to the market, stored, or used as an intermediate input  
x m   to either the G or K processes. We specify the production of pollution as conditioned 
by the extent and efficiency of use of the intermediate product  ym   in the K processes. 
Each process' productivity is specified as conditional on use of other inputs available 
from the market. As is clear from Figure 1, our conceptualization of processes allows 
management of pollution through dynamic changes such as storage, through intermediate 
product use (e.g. recycling), or through change in process operation level (e.g. shift from 
K to G processes). To emphasize the possibilities of internal management of pollution, 
we omit consideration of abatement at end-of-pipe. The inputs and outputs of each 
process are summarized in Table 1.  As a concrete example of the enterprises considered, 
the K processes can be thought of as crop production, the D processes as dairy 
production, the G processes as hay production, and the M process as manure production.  
Within this context, the pollution can be interpreted as nitrogen resulting from manure or 
commercial fertilizer application to fields adjusted for crop uptake.  Alternatively, within 
a manufacturing context, the K processes can be thought of batch processes, while the D 
and G processes are continuous processes.   
 
FIGURE 1. INTERDEPENDENCE OF ENTERPRISES 

 
 

We suppose that the batch process (K) produces  nii ,..,2,1, =   where n is an integer, 
different outputs with timing set by we label as the “ t   clock” that operates in discrete 
time.  In contrast, all other processes produce outputs on continuous time clock. The 
amount of output from K process producing  ith   product in  j th   shop at time  t   is 
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defined as 
( ) ( ) ( )( ) ( )( ) ( )ttxtZtAty j

ik
j

im
j

ik
j

ik
j

ik ,,,,,
21 θαα

=  

where  ( )tA j
ik ,   is the current technology’s total factor productivity of  the ith   K process 

in shop  j,    ( )tZ j
ik ,   is an input used for  ith  K process at shop  j   purchased from the 

outside of the firm, e.g. a part manufactured by other firms,  ( )tx j
im,   is an input from the 

inside of the firm, e.g. a part manufactured in M process, and  1α   and  2α   are 
parameters that translate inputs into an output. In addition,  ( )tj

ik ,θ   enables each shop to 

produce only one type of K product at time  t   by setting  ,,0,, iij
ik

j
ik ′≠=′θθ   which can 

be interpreted that each shop is specialized for only one product depending on its 
productivity  ( )., tA j

ik   Therefore, it is not feasible for one shop to produce two or more 

types of K products at the same time. Further, we interpret ( )tj
ik ,θ  as indicating the scale 

of the shop, that is as in traditional neoclassical economics, we suppose the production 
process is homothetic and interpret ( )tj

ik ,θ  as indicating scale of operation.   An 
alternative interpretation would be the intensity of operational use of a limited resource 
such as floor space.  Within the context of a farm setting, ( )tj

ik ,θ  can be viewed as the 
scale of field operation for crop j.   
 To consider returns to scale within this model, we follow standard notation and 
define returns to scale for the jth shop operation of the K process based on the following 
scale function:  
 

)()( 21),( ttt ααλλφ +=  
That implies  
 

)()()),(/)(/),(()( 21 ttttt ααλφλλλφψ +=∂∂=  
 
To specify dynamics of returns to scale, we have introduced time dependence.   To 
simplify, we suppose technological change is Hicks neutral and captured by ( )tA j

ik , .  For 
this paper, we also limit our consideration to the case where change in returns to scale is 
factor neutral, i.e. ( )tj

ik ,θ .   
 

)/()()()()()( 21212211 ααανααανανψ +==+= qqandttwherettt &&&&&  
 
Measurement of scale of operation follows directly from the scale function abovc.  That 
is, for a particular value of 0λ , the scale is simply )()(00 21),( ttt αα

λλφ
+

= .  However, this 
measure focuses on scale achieved by simultaneous change in factors by the same 
proportion.  Here, we focus on a concept of scale related to utilization of fixed production 
capacity as reflected by ( )tj

ik ,θ .   
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 We suppose that technical change has dynamics over time as a result of two 
processes that are controllable by the firm.  That is, we write  ( ) ( ) dttdAtA j

ik
j

ik /,, =&  as 
 

( ) ( ) ( ) ( )tyatAtxatA j
iky

j
ik

j
im

j
ik ,,,0, −=&  

 
where  0a   and  ya   are parameters.  We suppose that the first term indicates amelioration 

of productivity through application of the intermediate input  ( ),, tx j
im  conditional on 

current productivity  ( )tA j
ik , , while the second term indicates depreciation of productivity 

conditioned on output  ( )ty j
ik , .   Within this notation, we note that the evolution of output 

from the K processes is determined by a combination of the rate of change of returns to 
scale, technical change, and factors of production.   

We define inventory of  ith   K product in shop  j   as  ( )., tI j
ik  Inventory dynamics 

are defined by  ( ) ( ) dttdItI j
ik

j
ik /,, =&  as 

 
( ) ( ) ( ) ( )txtstytI j

ik
j

ik
j

ik
j

ik ,,,, −−=&  
 
where  ( )ts j

ik ,   is quantity marketed or sales of  ith   K product at shop  j.   Note that the 
summation of all internal inputs used for K process must be less than or equal to the total 
amount of inventory in M process which will be introduced.  

 
( ) ( )

( ) ( )tItx

txtx

m
m

m

j
im

ji
m

∑

∑∑
≤

≡ ,

 

 
Next, consider the D process.  We assume that production is continuous labeling 

its clock as the “τ   clock”.  The output of D process is specified as perishable. We 
further assume that there are vintages on machines involved in the D process that differ in 
their productivity.  We define the D process as: 
 

( ) ( ) ( ) ( )
121

,
21

≤+

≡

ξξ

ττττ ξξ
fddd xZLy

 

 
where  1ξ   and  2ξ   are parameters.  Recall that the output from D process is perishable, 
we specify ( )τdy  as nonstorable.  ( )τdL   is defined as a vintage function defined as 
follows: 
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( ) ( )
( ) dd

v
dd

v
evL d

τττ
τμτ ωω

−=
≡ 21

 

 
where  1ω   and  2ω   are parameters and  dτ   is the time at which machine  d   is 
introduced for the first time.  We specify ( )τdL   as a nonlinear productivity function.  We 
assume machines have the highest productivity just after a warm up period, after which 
productivity decreases with time.   M process is a by-product of D process with output  

( )τmy  defined as  
 

( ) ( ) ( ) 1 , 21
21 ≤+∗∗≡ ββτττ ββ

fmm xZHy  
 
where  1β   and  2β   are parameters,  H  is a productivity factor, and  ( )τmZ   is an input 
to M process purchased from the outside of the firm. The inventory of M process is 
denoted as  ( )τmI   and we write  ( ) ( ) dtdII mm /ττ =&   as 
 

( ) ( ) ( ) ( )ττττ mmmm xsyI −−=&  
 
In G process, the production process is continuous on the   clock and the output 
produced in G process is a non-perishable and can be allocated to two distinct marketable 
outputs.   The output of G process is defined as  

 
( ) ( ) ( )( ) ( )( ) xz

mggg xZAy γγ ττττ ∗∗=  
 
where  zγ   and  xγ   are parameters.  ( )τgA   is a productivity function which is defined as 

 
( ) ( ) ( ) ( )ττττ gyggmgg yaAxaA ,0, −=&  

 
where  ag,0   and  yg ,α   are parameters. The inventory of G process is  ( )τgI   and we 

write  ( ) =τgI&    ( ) dtdI g /τ   as  
 

( ) ( ) ( ) ( ) ( )τττττ cgggg yxsyI −−−=&  
 
where  ( )τgs   is the sale of a perishable form of the output from G process and ( )τcy  is 
the volume of a nonperishable form defined as 

 
( ) ( ) ( ) ( )ττττ cccc xsIy ++≡ &  

 
where  ( )τcs   is a sale of nonperishable form of  output from G process.  
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Next, we specify the pollution process as dependent on a joint product of the K 
process defined as j

iny , :  

( ) ( )( ) ( )( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++≡ ∑ tZnxtxny j

ik
j

kf
j

m
j

fin
j

,, 11 ττ  

where  fn   and  kn   are parameters.  Here, the pollution is specified as controllable 
through choice of intermediate and commercial inputs.  We define ( )τfx  as a result of 
intermediate input use by the D process:  
 

( ) ( ) ( ) ( )τλτλλτ ccggik
i

kf xxtxx ++≡ ∑ ,  

 
where  ,, gk λλ   and  cλ   are parameters.   We define  ( )τine ,  as a stock of pollution 
generated by a combination of production and usage, e.g. by recycling: 
 

( ) ( ) ( ) ( ) nibuy
d

de
inikin

in ,...,2,1,,,,
, =−−≡ τττ
τ
τ

 

 
where  ( )τinb ,   is a stock abatement at time  τ   and  ( )τiku ,   is the amount of the recycle 
of by-products. Let  ( ) ( )( )ττ nin ebk ,,   denote the stock abatement cost, which we define as  

 
( ) ( )( ) ( ) 1,, 21,,

21 ≤++= ηητττ ηη
neinbnin ecbcebk  

 
The amount of recycling is stated as  

 
( ) ( ) ( )

( ) 2

,,

/1 ττ

ττ

=

∗∗= ∑

k

j
ik

j
kkkik

v

tyvuu
 

 
where  ukk   is a parameter,  ( )tvk   is a deterioration function. The amount of recycling of 
by-product is proportional to the amount of K process output and it deteriorates over 
time. We assume that the cost of recycle is proportional to the amount of it, which can be 
stated as  ( )τikuuc ,   where  cu   is the coefficient.  
 



RETURNS TO SCALE AND STRUCTURAL CHANGE 
WEAVER - EAAE SEMINAR  BERLIN 2010  

 

 
 
Based on these production processes, we define aggregate profits  ( )τπ   as 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) τττ

ττττττ

ττττττ

ττττ
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00

000
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 To proceed, we consider the growth dynamics of this system.  To do so, we 
suppose the system’s enterprises operate such that aggregate profits are maximized in an 
optimal control problem.  In the absence of central regulation of the pollution, the 
enterprises find individual interests in managing pollution conditional on the intensity of 
their use of ny as an intermediate product.  In order to consider dynamics associated with 
centralized regulation of pollution we define the aggregate objective as considering both 
profits and the aggregate level of pollution.  That is, we define:  

 
( ) ( ) ( )( ) ( )τπτττ 3

2
21 weweww nn ++≡  

 
However, to retain focus on decentralized enterprises, we consider cases where w1=w2 
=0 and w3=1.  Thus, we suppose decentralized management solves the following 
aggregate control problem: 

( ) ττ
τ

τ
dwJ f

∫=
0

max  

 
NUMERICAL RESULTS 
To provide an illustration, we solve the corresponding mathematical program using a 
discrete time approximation with N = 20 equal time steps. In these illustrations, we 
implement optimization using GAMS/MINOS.  

To proceed, we consider the implications of returns to scale in the K process 
through a set of numerical simulations.  Specification of values for parameters and 
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exogenous variables such as market prices are presented in the appendix. We consider a 
20 period planning horizon. We consider the following cases: 

 
CASE 1: Near Constant returns to scale, ψ(t) = 0.99.   
CASE 2: Decreasing returns to scale ψ(t) = 0.80, no abatement. 
CASE 3: Decreasing returns to scale  ψ(t) = 0.50, no abatement. 
 

In each of these cases, recall the K process is specified as having declining productivity 
and is operated as a batch process only at discrete times, here specified as multiples of 5.  
 
CASE 1: Near Constant returns to scale, ψ(t) = 0.99 .   
Figure 2 shows case 1a results. The upper left panel of Figure 2 illustrates output of K 
process where it is clear that it is optimal to specialize in production of only one output, 
however the nature of that specialization varies over time.  In upper right panel of Figure 
2, we see output of M and D process.  Recall, for the D process we specified two 
operations based on differing vintages (e.g. cow lactation, or machine use).  As these are 
continuous processes conditional on the discrete time K processes we note what can be 
interpreted as seasonality.  The lower left panel of Figure 2 shows output of the discrete 
time G process. In Figure 2, lower right panel, we see pollution fluctuates with the 
operation of the K process that uses j

iny ,  as an intermediate input.  In Figure 3, we present 
the dynamics of scale of operation based on optimal paths found for the scale measures, 

( )tj
ik ,θ .  The results clearly indicate that it is optimal to specialize K process production in 

particular shops.  For example, in the first and second time periods (t=5, 10), only 
product 3 is produced and only in shop 2.  In time period 15, only product 1 is produced 
and only in shop 1, while in time period 20, only product 2 is produced and only in shop 
2.  This specialization allows for control of pollution while meeting demands for 
intermediate input use of the K process outputs.   

 
FIGURE 2. Case 1a.  Output and Pollution Dynamics 
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FIGURE 3. Case 1a Optimal scales of operation  

( )tj
ik ,θ  = sij = scale of ith product by jth shop. 

 
 
 
CASE 2: Decreasing returns to scale ψ(t) = 0.80. 
Here we see diversification in outputs in each time period, see Figure 4, as well as across 
shops, see Figure 5.  We see from Figure 5 that in the first and second production periods, 
product 1 is produced in shops 1 and 2, and product 2 in ship 3.  In the third time period, 
shop 1 produces product 2 and shop 3 produces product 3.  In the forth time period, shop 
1 continues producing product 2, while shop 2 produces product 1.  
 

  
FIGURE 4 CASE 2: Decreasing returns to scale ψ(t) = 0.80. 
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FIGURE 5 CASE 2: Decreasing returns to scale ψ(t) = 0.80. 
Optimal scales of operation  ( )tj

ik ,θ  = sij = scale of ith product by jth shop. 
 
CASE 3: Decreasing returns to scale ψ(t) = 0.50. 
Here, in comparison to Case 1 we see a dramatic change in the structure of production.  
First, in the upper left panel we see a diversification of outputs from the K process.  This 
diversification is also seen in Figure 6 where in contrast to the specialization seen in 
Figure 4, for this case we see that multiple shops are operated each time period.  Here, we 
see for the first production period, output 1 is produced only in shop 1, while output 3 is 
produced in both shop 2 and 3.  In the second and the third period, output 1 is produced 
only in shop 1, while output 2 is produced in shop 2, output 3 in shop 3.   In the forth 
period, output 2 is produced in shop 1 and shop 2, while output 3 is produced in shop 3.   
 

 
FIGURE 6  CASE 2 Decreasing returns to scale  ψ(t) = 0.50. 
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FIGURE 7 CASE 2 Decreasing returns to scale  ψ(t) = 0.50. 
Optimal scales of operation ( )tj

ik ,θ  = sij = scale of ith product by jth shop. 
 
 Interpretation of these dynamics with respect to changes in returns to scale is as 
follows.  Under near constant returns to scale (Case 1), each product is produced only in 
one production period, and in only one shop.  This can be thought of production at scale 
1.  We find similar scale of production, though in the second through forth periods, scale 
is expanded to 2 for output 2.  That is, scale of production of output 2 is doubled under a 
dramatic reduction in returns to scale.  This is intuitive if we view the expression of 
returns to scale in the curvature of an enterprise’s average cost curve.  A reduction in 
returns to scale at any point along the average cost curve follows from an increase in the 
degree of curvature of that curve.  That is, it shifts from a shallow cup to one with steeper 
sides.  It follows that the optimal output is reduced.    
 
CONCLUSIONS AND FUTURE DIRECTIONS 
Results presented here provide preliminary illustrations of the dynamic implications of 
discrete changes in returns to scale.  We limited our focus here to short-run dynamics.  
Within this dynamics context, the implications of changes in returns to scale are 
complicated and obscured by multiple output choices and interactions across processes.  
Results presented here were generated over a relatively short time horizon, in further 
research the time horizon will be extended to examine steady state, stability, and cyclic 
implications of changes in returns to scale.   Nonetheless, several conclusions appear to 
be supportable.  First, as returns to scale increase for one of a set of interrelated 
technologies, we see increased specialization.  Second, for the specified interrelationships 
in our model, we see that as returns increase, the growth of the pollution stock is reduced.   
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