
 

Measurement of dynamic efficiency, a directional distance function parametric 

approach 

 

Teresa Serra1, Spiro Stefanou2,3 and Alfons Oude Lansink3 

 

1Centre de Recerca en Economia i Desenvolupament Agroalimentari (CREDA-UPC-IRTA) 

Spain, teresa.serra-devesa@upc.edu; 2Department of Agricultural Economics and Rural 

Sociology, Penn State University, USA; 3Business Economics Group, Wageningen 

University, Netherlands.  

 

 
 

 
 

Paper prepared for presentation at the 114th EAAE Seminar  
‘Structural Change in Agriculture’, Berlin, Germany, April 15 - 16, 2010 

 

 

Abstract 

This research proposes a parametric estimation of the structural dynamic efficiency measures proposed by Silva 

and Oude Lansink (2009). Overall, technical and allocative efficiency measurements are derived based on a 

directional distance function and the duality between this function and the optimal value function. The 

applicability of the parametric proposal is illustrated  by assessing dynamic efficiency ratings for a sample of 

Dutch dairy farms observed from 1995 to 2005.  
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1. Introduction 

 

The economics literature on efficiency has traditionally derived static technical efficiency 

measures that ignore the adjustment of quasi-fixed inputs to their long-run levels and the time 

interdependence of production decisions. Only recently have we witnessed important 

contributions to the literature on dynamic efficiency modeling. In this regard, it is noteworthy 

that most of the advances have taken place in the framework of the nonparametric data 

envelopment analysis (DEA). While Sengupta (1995) introduced the first order conditions of 

the dynamic optimization problem into the DEA models, Nemoto and Goto (1999, 2003) 

considered the stock of capital at the end of a time period as an additional output within the 

DEA model. Silva and Stefanou (2007) proposed nonparametric measures of dynamic 

efficiency based on Silva and Stefanou’s (2003) nonparametric dynamic dual cost approach to 

production analysis. More recently, Silva and Oude Lansink (2009) have employed the 

adjustment cost technology to generalize the static conditional input distance function 

developed by Chambers et al. (1998) to a dynamic framework. The empirical application of 

their proposal is illustrated using DEA methods.  

 While a number of parametric reduced-form approaches to dynamic efficiency 

measurement have been proposed (Tsionas, 2006; Ahn and Sickles, 2000), structural 

approaches have been very scarce. The paper by Rungsuriyawiboon and Stefanou (2007) is a 

notable exception. These authors propose a shadow cost approach in the framework of the 

dynamic duality model of intertemporal decision making to generate both allocative and 

technical efficiency measures. In being based on the dynamic duality theory of intertemporal 

decision making, the approach by these authors does not however specify nor estimate the 

production technology. The proposal by Silva and Oude Lansink (2009) generates efficiency 

measures based on the production technology. The duality between this function and the 



optimal value function is developed and allocative efficiency measures are subsequently 

derived. Silva and Oude Lansink’s (2009) method is of particular interest over previous 

proposals of dynamic efficiency measurement, since the technology is specified as a 

directional distance function. Directional distance functions are a more general and less 

restrictive specification of technology than traditional specifications of the production 

frontier. Our work contributes to previous literature by parametrically estimating the model 

proposed by Silva and Oude Lansink (2009). As has been noted above, while nonparametric 

methods have been shown to be an adequate methodology to measure dynamic efficiency, 

structural parametric applications have been very scarce, making the analysis of this issue 

necessary.  

 

 

2. The dynamic directional distance function, the intertemporal optimization problem 

and duality 

 

Following Silva and Oude Lansink (2009), a directional distance function is used to generate 

farm-level dynamic technical inefficiency measures for all factors of production. Let  

represent a vector of outputs,  denote a vector of variable inputs,  the capital 

stock vector,  the vector of gross investments and  a vector of fixed inputs for 

which no investments are allowed. The production input requirement set can be represented as 

ℜ ++
∈ My

ℜ+
∈ Nx ℜ ++

∈ FK

ℜ+
∈ FI C

++∈ℜL

{ }( : ) , ) ca  given  V = ( , ) : ( n produce y K,L x Ix I y K,L . The input requirement set is assumed 

to have the properties defined by Silva and Oude Lansink (2009), i.e., ( : )V y K,L is a closed 

and nonempty set, has a lower bound, is positive monotonic in , negative monotonic in I , is x
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a strictly convex set, output levels increase with the stock of capital and quasi-fixed inputs 

and can be disposed of freely.  

The input-oriented dynamic directional distance function , ,iD x I( )y,K,L,x I;g g
G

 can be 

defined as follows: 

 

( ){ }
( ) ( )

, , ) max : ( : )

,  , , ,

i

N F N F

D Vβ β β

++ ++

= ∈ℜ + ∈

∈ ∈ ≠ℜ ℜ
x I x I

x I x I

( ,y,K,L,x I;g g x - g ,I g y K,L

                               g g  g g  0 0

G

 (1) 

 

if ( ) ( : )Vβ β+ ∈x Ix - g , I g y K,L  for some β , , , )iD = −∞x I(y,K,L, x I;g g
G

, otherwise. 

 

The distance function is a measure of the maximal translation of  in the direction 

defined by the vector ( , that keeps the translated input combination inside 

( ,x I)

)Ix gg , ( : )V y K,L . 

Since xgβ  is substracted from  and x Igβ  is added to , the directional distance function is 

defined by simultaneously contracting variable inputs and expanding gross investments. As 

shown by Silva and Oude Lansink (2009), 

I

x I, , )iD ≥x I(y,K,L, ;g g 0
G

  fully characterizes the 

input requirement set ( :V )y K,L , being thus an alternative primal representation of the 

adjustment cost production technology.  

 The input-oriented dynamic directional distance function inherits the properties of the 

static directional input function. These properties are:  

 

D.1. If ( : )V y K,L  is strictly convex, then , ,iD x I(y,K,L, x I;g g )
G

 is strictly concave with 

respect to (  given )Ix, y , K and . L

D.2. , ,iD α α+ =x I x I(y,K,L, x - g I g ;g g
G

) , , )iD α−x I(y,K,L, x I;g g
G

, . α ∈ℜ
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D.3. If outputs can be disposed of freely, then 

. ⇒≥ yy' , , ) , ,i iD D<x I x I(y',K,L, x I;g g (y,K,L, x I;g g
G G

)

D.4. If ( : )V y K,L

, ,x I

 is positive monotonic in x , then 

⇒≥ xx' ) , ,i iD D> x I( )y,K,L,x' I;g g (y,K,L, x I;g g
G G

. 

D.5. If ( : )V y K,L

, ,x I

 is negative monotonic in I , then 

⇒≤ II' ) , ,i iD D> x I( )y,K,L,x I';g g (y,K,L, x I;g g
G G

. 

D.6. If output levels are increasing in the stock of capital, then 

⇒≥ KK' , , ) , ,i iD D>x I x I( )y,K',L, x I;g g (y,K,L, x I;g g
G G

. 

D.7. If output levels are increasing in the stock of fixed inputs, then 

≥ ⇒L' L , , ) , ,i iD D>x I x I( )y,K,L', x I;g g (y,K,L, x I;g g
G G

. 

D.8. 1, , ) , , )i iD Dα α
α

>x I x I(y,K,L,x I; g g (y,K,L,x I;g g
G G

)

, . 0α >

D.9. , ,iD x I(y,K,L,x I;g g
G

 is continuous with respect to ( , given )Ix, K ,  and L y . 

 

 It is assumed that firms are intertemporally cost minimizing and thus they take their 

decisions in accord with the following optimization problem: 
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[ ], ) min

. .

rt

t

W e

s t

∞
−= +

= −

∫x,I

.

(y,K,L,w c w'x c'K

K I δK

dt

0

 (2) 

, , )iD ≥x I(y,K,L, x I;g g
G

 

 

where  is a variable input price vector,  is a vector of capital rental prices, δ  

is a diagonal matrix containing depreciation rates and 

NRw ++∈ FRc ++∈

r  is the discount rate.  

 Chambers et al. (1998) establish duality between static directional input distance 

functions and the static cost function. Silva and Oude Lansink (2009) prove that 

, ,iD x I( )y,K,L,x I;g g
G

 is dual to , )W (y,K,L,w c . Dynamic duality is based on the dynamic 

input distance function properties defined above (see Silva and Oude Lansink, 2009 for 

further detail). The Hamilton-Jacobi-Bellman (H-J-B) equation corresponding to the 

optimization program can be expressed as: 

 

{ }, ) min , ) '( ) , , )irW W Dλ= + + − +k xx,I
(y,K,L, w c w'x c'K (y,K,L, w c I δK ( Iy,K,L, x I;g g

G
 (3) 

 

Where ( )Wk y,K,L,w,c

, )= k (

 is the first derivative of  with respect to  and )( cw,L,K,y,W K

Wλ I − xy,K,L,w c g w'g . From the H-J-B equation in (3), the duality between 

, , )x I
iD (y,K,L, x I;g g
G

W ( and , )y,K,L,w c  is given by the following optimization problems: 

 

{

}
, ) min , ) '( )

( , ) ) , , )i

rW W

W D

= + + −

−

kx,I

k I x x I

(y,K,L,w c w'x c'K (y,K,L,w c I δK

(y,K,L,w c g w'g (y,K,L,x I;g g
G

+
 (4a) 
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, ) '( ) , ), , ) min
, )

i W rWD
W

⎧ ⎫+ + − −= ⎨ ⎬−⎩ ⎭
k

x I w,c
x k I

w'x c'K (y,K,L, w c I δK (y,K,L, w c(y,K,L, x I;g g
w'g (y,K,L, w c g

G
 (4b) 

 

 From the previous optimization problems, Silva and Oude Lansink (2009) derive a 

dynamic inefficiency measurement. The dynamic cost inefficiency can be expressed as: 

 

, ) '( ) , )
, )

                                                                              , , )

i

i

W rWOI
W

D

+ + − −= ≥
−

k

x k I

x I

w'x c'K (y,K,L,w c I δK (y,K,L,w c
w'g (y,K,L,w c g

(y,K,L,x I;g g
G

 (5) 

 

iOI

OI

 is the difference between the shadow cost of actual input choices and the minimum 

shadow cost, normalized by the shadow value of the direction vector. 

, ,i iD≥ x I( )y,K,L, x I;g g
G

, being , ,iD x I( )y,K,L,x I;g g
G

 a measure of technical inefficiency 

( ) of both variable and quasi-fixed inputs. The difference between the dynamic cost and 

technical inefficiencies yields the allocative inefficiency ( ): 

iTI

0iAI ≥

 

, , )i iOI D AI= x I(y,K,L, x I;g g
G

i+  (6) 

 

In the next section, we present the empirical specification of both the directional distance 

function and the minimum shadow cost function. Estimation methods are also discussed. 
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3. Empirical specification 

 

Following Chambers (2002) and Färe et al. (2005), the quadratic function is used as a 

parametric specification for the directional distance function. The quadratic specification 

offers the advantage that it can be easily restricted to satisfy property D.2., the so called 

translation property. If we set , , 1,  1,...,xig i= = N 1,  1,...,Ijg j= = F 1=M  (i.e., we assume a 

single-output firm) and add a time trend ( t ), the distance function for the firm  can be 

expressed as: 

h

 

1 1 1 1

2
' ' ' ' ' ' ' '

1 ' 1 1 ' 1 1 ' 1 1 ' 1

1

, , )

1 1 1 1 1
2 2 2 2 2

C F N F
i
h y Ln n Ij j xi i Kj j

n j i j

C C F F N N F F

yy LnLn n n IjIj j j xixi i i KjKj j j
n n j j i i j j

C

yLn n yIj j
n

D y t a a y a L a I a x a K

a y a L L a I I a x x a K K

a yL a yI

= = = =

= = = = = = = =

=

= + + + + + +

+ + + +

+

∑ ∑ ∑ ∑

∑∑ ∑∑ ∑∑ ∑∑

∑

( ,K,L,x I, ;1 1
G

1 1 1 1 1 1 1

' '
1 1 1 1 1 ' 1 1 1

F N F C F C N

yxi i yKj j LnIj n j Lnxi n i
j i j n j n i

C F F N F F F N

Lnkj n j Ijxi j i IjKj j j Kjxi j i t
n j j i j j j i

a yx a yK a L I a L x

a L K a I x a I K a K x a t

= = = = = = =

= = = = = = = =

+ + + + +

+ + + +

∑ ∑ ∑ ∑∑ ∑∑

∑∑ ∑∑ ∑∑ ∑∑

+
 (7) 

  

Parameter restrictions that need to be imposed for the translation property to hold are: 

∑∑
==

−=−
N

i
xi

F

j
Ij aa

11
1

'
' 1 1

N F

xixi Ijxi
i j

a a
= =

− + =∑ ∑

1 1 1 1

C F C N

LnIj
n j n i

a
= = = =

−∑∑ ∑∑

IjIjIjIj aa '' = xixi aa ' =

; ; ; 

; ; and 

. Symmetry restrictions are also imposed: , 

, , and . 

∑∑∑∑
= == =

=−
F

j

N

i
Kjxi

F

j

F

j
IjKj aa

1 11 1'
' 0

N '
' 1 1

M N

IjIj Ij
j i

a a
= =
∑ ∑

KjKja '' =

0
1 1

=−∑ ∑
= =

F

j

N

i
yxiyIj aa

F

' 'LnLn Ln Lna a=

0,  1,...,i =

0Lnxia =

xixi ' KjKja

0,  1,...,xi j− = =
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Following Kumbhakar and Lovell (2000) and Färe et al. (2005), the dynamic quadratic 

directional input distance function can be estimated using stochastic estimation techniques. 

The stochastic specification of the distance takes the following form: 

 

0 , ,i
hD y t ε= ( ,K,L,x I, ;1 1
G

) h+

u

hε

, )

 (8) 

 

where ,  and . In order to estimate (8), the translation 

property is used: 

h hv uε = − h
2(0, )h vv N σ∼ 2(0, )hu N σ+∼

 

, , )i
h h h hD y tα α α− = + +( ,K,L, x - I , ;1 1

G
 (9) 

 

Function  corresponds to the quadratic form in (7), with  ,i
h h hD y tα α+( ,K,L, x - I , ;1 1
G

hα

hα

 added to gross investments and subtracted from variable input quantities. By choosing a 

 specific for each firm, variation on the left hand side of (9) is obtained. Following Färe et 

al. (2005),  is made equal to 
hα 1I .1 

Stochastic estimation is accomplished by maximum likelihood procedures. For a 

sample of H  observations, the logarithm of the likelihood function is defined as: 

 

2
2

1 1

1- ln ln
2

H H
h

h
h h

L H ε
ε

ε ε

ε λη σ
σ σ= =

⎛ ⎞
= + Φ − −⎜ ⎟

⎝ ⎠
∑ ε∑

                                                

 (10) 

 

 
1 Parameter estimates changed very little with the choice of αh however. 
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Where η  is a constant, , ( )1/ 22 2
u vεσ σ σ= + u vελ σ σ= , and Φ  is the standard normal 

cumulative distribution function. Point estimates of each producer’s technical inefficiency can 

be derived as follows: 

 

1 1i h h
h

h

uTI TE−= − = −X '
X '
Α

Α
i
h  (11) 

 

where  and  are the vectors of explanatory variables and parameter estimates 

respectively,  is a measure of dynamic technical efficiency,  is replaced by its 

conditional expectation 

hX Α

i
hTE hu

( ) ( )
( )

*

1
h h

h h
h

E u ε ε ε

ε ε ε

ε λ σ ε λε σ
ε λ σ σ

⎡ ⎤φ
= −⎢ ⎥− Φ⎢ ⎥⎣ ⎦

, φ  is the standard normal 

probability distribution function and 2 2 2
* u v εσ σ σ σ= 2

h

.  

 Once the dynamic directional input distance function has been estimated and technical 

efficiency point estimates derived, one can obtain the dynamic cost inefficiency model by 

means of estimating the following cost frontier model, where a time trend has also been 

added: 

 

2 2 2( , , , , ) ( , , , , ) ( , , , , )h tC rW y w t W y w t W y w t ξ
•

= − −kK L c, K L c, K K L c, +  (12) 

 

where 
1

hC
w
+= w'x c'K  is the observed long-run cost normalized by the variable input price 

, 1w 2

1 1

( , , , )wW y t
w w

cK,L ,  is the optimum cost where all input prices have been normalized 

with respect to , 1w 2

1 1

( , , , , , )wW y t
w wk

cK L  and 2

1 1

( , , , , )t
wW y t
w w

cK L ,  are its first derivatives 
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with respect to  and  respectively, K t h h hξ γ δ= + , 2(0, )h N γγ σ∼ , and . The 

cost inefficiency term  corresponds to the numerator in (5). It is thus a non-normalized 

overall efficiency measure. By normalizing all input prices with respect to ,  is 

specified as: 

2(0, )h N δδ σ+∼

1w W

hδ

(.)

 

2
2 0 2

1 11 1

2
'2 2

2 2 '
1 ' 1 1 ' 1 1 '1 1 1

2
2

1 1

( , , , )

1 1 1 1 1
2 2 2 2 2

F F C
j

y w cj kj j Ln n
j j n

F F F F C C
j j

yy w w cjcj kjkj j j
j j j j n n

j
yw ycj ykj j

cwW y w t b y b b b K b L
w w

c cwb y b b b K K
w w w
cwb y b y b yK

w w

= = =

= = = = = =

+ + + + +

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠

+ + +

∑ ∑ ∑

∑∑ ∑∑ ∑∑

K L, c,
1

' ' ' '
1

LnLn n nb L L

b= +

+ + +

2 2
2 2

1 1 11 1 1

'2

1 1 ' 1 1 1 1 11 1 1

C F F
j

yLn n w cj w kj j
n j j

C F F F C F C
j j

w Ln n j cjLn n kjLn j n t
n j j j n j n

cw wb yL b b K
w w w

c cwb L K b L b K L b t
w w w

= = =

= = = = = = =

+ + +

+ + + +

∑ ∑ ∑

∑ ∑ ∑∑ ∑∑

'

 (13) 

1 1

2 '

F F

j j

kjcjb

= =
∑ ∑

∑

cjcj

 

Symmetry restrictions , , , and  are imposed so 

as to make the model more tractable.  

' 'cj cjb b= ' 'kjkj kj kjb b= ' 'LnLn Ln Lnb b= 'kjcj kj cjb b=

 Given the distributional assumptions made for hγ  and , the log likelihood function 

corresponding to the stochastic cost frontier can be expressed as follows: 

hδ

 

2
2

2
1 1

1- ln ln
2

H H
hξ λ

h
h h

L H ξ
ξ

ξ ξ

ω σ ξ
σ σ= =

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠
∑Φ∑  (14) 

 

where  is a constant, and ω ( )1/ 22 2
ξ γ δσ σ σ= + ξ δ γλ σ σ= . Point estimates of each producer’s 

overall inefficiency can be generated as follows: 
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2
2

1 1

1 ( , , ,h
h

h h

wOI w W y t
w wδ

⎡ ⎤ ⎡
= − −⎢ ⎥ ⎢+ ⎣ ⎦⎣ ⎦

k
X 'B cK L ,

X 'B
, )

⎤
⎥  (15) 

  

where  and  are the vectors of explanatory variables and parameter estimates 

respectively, 

hX B

h
h =

h h

OE
δ+

X 'B
X 'B

 

 is a measure of overall efficiency,  is replaced by its 

conditional expectation

hδ

( ) ( )
( )

**

1
h h

h h
h

E ξ ξ ξ

ξξ ξ

ξ λ σ ξ λ
δ ξ σ

σξ λ σ

⎡ ⎤φ
= ⎢ −

− Φ −
⎥

⎢ ⎥⎦
d  an 2 2 2 2

** δ γ ξ

⎣
σ σ σ=

ugh (6).  

σ . 

Once the dynamic cost and technical efficiency measures are generated, one can estimate 

allocative efficiency thro

 

 

4. Empirical application 

 

Our empirical application focuses on a sample of specialized dairy farms in Holland. Farm-

level data are obtained from the European Commission’s Farm Accountancy Data Network 

(FADN) and cover the period 1995-2005. To ensure that milk output is the main farm output, 

we select those farms whose milk sales represent at least 80% of total farm income. The 

dataset is an unbalanced panel that contains 2,614 observations on 639 farms that, on average, 

stay in the sample during 4 years. 

 In order to keep the vector of parameters to estimate to a manageable size, we 

distinguish one output, two variable inputs, two quasi-fixed inputs and two fixed inputs. 

Output ( ) is defined as a farm’s total output and includes livestock and livestock products, 

crops and crop products and other output. The two variable inputs are variable costs other 

than feed ( ) and feed expenses ( ). Variable  is thus an aggregate input that includes 

y

1x 2x 1x
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veterinary expenses, energy, contract work, crop-specific costs and other variable input costs. 

Breeding livestock is considered as a quasi-fixed input ( ). Machinery and buildings, also 

defined as quasi-fixed inputs, are aggregated into . Variables , , ,  and  are 

measured at constant 1995 prices. Total utilized agricultural area ( ), measured in hectares, 

and total labor input ( ), which is mainly composed of family labor and measured in annual 

working units (AWU), are assumed to be fixed inputs.  

1K

2K y

L

1x 2x 1K 2K

1

2L

 Since output and input prices are unavailable from FADN, country-level price indices 

are taken from Eurostat’s New Cronos Dataset. Netputs measured in monetary values are 

defined as implicit quantity indices by computing the ratio of value to its corresponding 

Tornqvist price index. Depreciation rates considered for buildings, machinery and breeding 

livestock are 3%, 10% and 25% respectively. The interest rate ( r )  is defined as the average, 

over the period 1995-2005, of the annual interest rate for 10 years’ maturity government 

bonds (Eurostat) and is equal to 4.97%. Following previous research, we assume that the 

current price of a quasi-fixed input can be derived as the discounted sum of the future rents on 

the depreciated asset (Epstein and Denny, 1983; Pietola and Myers, 2000). Based on this 

assumption, the rental cost price of capital is defined as ii z)i (rc = + δ , where iδ  is the quasi-

fixed asset depreciation rate and  is the quasi-fixed asset price (defined as a Tornqvist price 

index). 

iz

 With 1M =  ,  and  the parameter-restricted input distance function 

can be expressed as:  

2 2F = 2N =C =
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( ) ( ) ( )1 1 2 2 1 1 1 2 1 2 2 1 2

2 2 2
1 1 1 2 2 1 1 1 1 2 1 2 2 2 2

2 2 2 2 2 2
1 1 2 2 1 2

1 1 1 1 2 2 2 2 1 2 1 2 1 1

, , )

1 1 1
2 2 2

2 2 2 2 2 2

i
h y L L x x

k k yy L L L L L L

x x x x x x

ID y t a a y a L a L a I x a I x a I

I a K a K a y a L a L L a L

I x I x I Ia I x a I x a x x I x

= + + + + + + + + − +

− + + + + + + +

⎛ ⎞ ⎛ ⎞
+ + + + + + + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

( ,K,L, x I, ;1 1
G

I

2 2

2 2 2 2 2 2
1 2 1 2 1 2

2 1 1 1 2 1 1 2 1 2 2 2 1 2 1 2

2 2
1 1 1 1 2 1 2 2 2 2 2 1 2 1 1 1 2 1 2

1 1 2 2 1 2

2 2 2 2 2 2
1 1 ( ) ( ) (
2 2

(

I x I x I I

K K K K K K yI yx yx

yK yK I K

I x

I I I I I Ia I x I x a I x I x a I I

a K a K K a K a yI yI a yI yx a yI yx

a yK a yK a

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛

− + − + + − + − + − + − +⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

+ + + − + + + + + +

+ + − 1 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2

1 2 1 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2 1 1 1 1 1 1

1 1 2 2 1 2 1 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2

1 1 1 1 1 1

) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

I K I K

K x K x K x K x

yL yL L I L I L I

L x

I K I K a I K I K a I K I K

a I K K x a I K K x a I K K x a I K K x
a yL a yL a L I L I a L I L I a L I L I

a L I L x

+ + − + + − + +

+ + + + + + +
+ + − + + − + + − + +

+ 1 2 1 1 1 2 2 1 1 1 2 1 2 2 1 1 2 2

1 1 1 1 2 1 2 1 1 2 1 2 2 2 2 2

( ) ( ) ( )L x L x L x

L K L K L K L K t

a L I L x a L I L x a L I L x
a L K a L K a L K a L K a t

+ + + + + + +
+ + + +

)

⎞
⎟
⎠  (16) 

 

and the cost frontier function to be estimated is: 
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5. Results 

 

Table 1 provides descriptive statistics for the variables used in the analysis. Farms’ total 

output quantity index ( y ) has an average of almost 200 thousand per year. The mean quantity 

index representing total variable expenses ( 1x  and 2x ) is below 90 thousand, with feed 

expenses contributing 40% to this quantity. The observed long-run cost represents almost 

70% of total output. The breeding livestock quantity index ( ) is, on average, almost 69 

thousand. While breeding livestock gross investments are substantial (

1K

1I ), net investments 

( ) represent only 0.25% of , which is due to the milk quota system regulating EU’s 

dairy sector and limiting this sector’s growth. While the milk quota places a strong cap on the 

growth of the dairy herd, it does not prevent modernization of dairy holdings that, on average, 

have net investments in machinery and buildings of almost 7% per year.  

1K
•

1K

 Table 2 provides parameter estimates of the directional distance function. Almost 70% 

of the parameters are statistically significant. As expected, the first derivatives of the 

directional distance function (table 3), suggest that the distance increases with an increase in 

variable, quasi-fixed and fixed inputs, while it decreases with an increase in output and 

investment demand. In other words, dynamic technical inefficiencies worsen when a farm 

requires more input to produce the same amount of output and gross investment, and improve 

when output and gross investment grow, keeping input use constant.  

 First derivatives are computed at the data means and Monte Carlo Bootstrapping 

techniques are used to generate their variances. We utilize 500 pseudo-samples of the same 

size as the original sample, drawn with replacement. We then estimate both the distance and 

the cost function and derive their first derivatives (calculated at constant values, i.e., at the 
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means of the variables from the original sample). Replicated estimates of these derivatives are 

then used to derive their variance-covariance matrix.2  

 The Luenberger productivity change indicator (PC) (Chambers, 2002) is computed 

and decomposed into the efficiency changes (EC) and the technical efficiency change (TC) 

indicators. Results suggest a decline in productivity over the period of analysis (the PC has a 

mean value of -0.11), which can be attributed to a decline in the efficiency (EC = -0.21), not 

fully compensated by a positive technical change component (TC = 0.10). The progressive 

transformation of the Common Agricultural Policy (CAP) from a policy mainly based on 

price supports, to a policy based on (partially and fully) decoupled payments may explain a 

progressive reduction of the incentive of farmers to operate efficiently (Serra et al., 2008).  

Estimation of the cost frontier model is presented in table 4. More than half of 

parameter estimates are statistically significant. Compatible with economic theory, the first 

derivatives of function  show that the cost increases with normalized variable (( )hC . 2

1

w
w

) and 

quasi-fixed input prices ( 1

1

c
w

 and 2

1

c
w

), while it decreases with the capital stock (table 5). 

 Dynamic technical, allocative and overall inefficiency estimates are presented in table 

6. The average cost inefficiency ( ) over the period studied is 0.12, involving the 

possibility to produce the same amount of output with long-run cost savings on the order of 

12%. Cost inefficiency is mainly due to technical inefficiency ( ) which is on the order of 

0.11 and which suggests that there is scope for an 11% cost reduction through a more efficient 

use of inputs.  

hOI

i
hTI

                                                 
2 It is noteworthy that our non-parametric bootstrap approach is robust to misspecification issues, including 

heteroskedasticity. 
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Our dynamic technical inefficiency scores are compatible though not directly 

comparable with static measures generated by previous research. Reinhard, Lovell and 

Thjissen (1999) assess, among other issues, technical efficiency of a sample of Dutch dairy 

farms through a production frontier and obtain average inefficiency values of almost 0.11. 

Using a shadow cost system approach, Reinhard and Thjissen (2000) derive, also for a sample 

of Dutch dairy farms, technical inefficiency scores on the order of 0.15. Kumbhakar et al. 

(2007) obtain inefficiency scores of 0.13 for a sample of Spanish dairy farms based on a 

nonparametric stochastic frontier. Sipiläinen and Oude Lansink (2005) use a stochastic 

frontier distance function and derive slightly higher inefficiency measures (0.17) for a sample 

of Finnish dairy farms.  

Allocative inefficiency derived by our analysis ( ), with an average score of 0.01, 

shows little scope for cost reduction through an improved input mix given market prices. This 

indicates that Dutch dairy farmers are long-run cost minimizers. While we find allocative 

inefficiency to represent only around 9% of overall inefficiency, Silva and Oude Lansink 

(2009) find a deficient allocation of inputs relative to their market prices to generate 22% of 

overall inefficiency for a sample of Dutch glasshouse horticulture firms. Their allocative 

inefficiencies are on the order of 0.1. However, Reinhard and Thjissen (2000) find much 

lower allocative inefficiencies (below 0.5) for a sample of Dutch dairy farms.   

hAI
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6. Concluding remarks 

 

The economics literature on efficiency measurement has traditionally ignored the adjustment 

of quasi-fixed inputs to their long-run equilibrium and time interdependence of production 

decisions. Recent proposals of dynamic efficiency measurement have been mainly developed 

in the framework of the nonparametric DEA, being the parametric approaches very scarce.  

 Up to date, Rungsuriyawiboon and Stefanou (2007) constitutes the only published 

structural parametric approach to dynamic efficiency measurement. Our analysis contributes 

to the literature by parametrically estimating the model proposed by Silva and Oude Lansink 

(2009), which generates dynamic efficiency measures based on a directional distance function 

and the duality between this function and the optimal value function. We propose an 

econometric estimation of the overall, technical and allocative efficiency measures proposed 

by these authors. 

 The empirical applicability of this proposal is illustrated by assessing dynamic 

efficiencies for a sample of Dutch dairy farms observed over the period 1995-2005. Dynamic 

efficiency ratings are compatible with static ratings derived by previous research. Average 

dynamic cost inefficiency indicates the possibility to accomplish long-run cost savings on the 

order of 12%. These cost savings are to be mainly achieved through a reduction in input use. 

An improved input mix given market prices offers, on the contrary, little scope for cost 

reduction.  
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Table 1. Descriptive statistics for the variables used in the analysis 

Variable  Mean 
Standard 

deviation 
y  Total output (index) 199,665.76 115,708.47 

C  Observed long-run cost (index) 137,006.94 75,100.78 

1K  Breeding livestock (index) 68,747.85 39,215.14 

2K  Buildings and machinery (index) 204,077.17 141,387.32 

1L  Land (hectares) 44.73 24.18 

2L  Labour (AWU) 1.71 0.64 

1x  Variable inputs, except feed (index) 52,075.09 28,278.93 

2x  Feed (index) 34,513.88 21,574.47 

1I  
Gross investments in breeding 

livestock (index) 
17,358.42 13,565.17 

2I  
Gross investments in machinery and 

buildings (index) 
24,754.31 53,066.53 

1K
•

 
Net investments in breeding livestock 

(index) 
171.46 7,115.17 

2K
•

 
Net investments in machinery and 

buildings (index) 
13,851.36 49,641.54 

p  Output price (index) 0.99 0.04 

1w  
Variable inputs’ price (excluding feed) 

(index) 
1.16 0.11 

2w  Feed price (index) 0.99 0.04 

1c  Breeding livestock rental price (index) 0.27 0.02 

2c  
Machinery and buildings rental price 

(index) 
0.12 0.01 
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Table 2. Directional distance function parameter estimates 

Parameter Estimate Standard Error Parameter Estimate Standard Error 

a  -4.85E-02** 2.39E-02 1yKa  2.28E-02 7.90E-02

ya  -1.02E+00** 5.71E-02 2yKa  -6.53E-03 6.60E-02

1La  3.70E-01** 4.80E-02 1 2I Ka  -2.28E-02 2.45E-02

2La  -1.31E-01** 4.84E-02 2 1I Ka  2.61E-02 3.02E-02

1xa  3.87E-01** 3.33E-02 2 2I Ka  -1.84E-02 3.03E-02

2xa  5.49E-01** 3.67E-02 1 2K xa  -4.73E-02 7.43E-02

2Ia  -1.72E-02** 8.63E-03 2 1K xa  -8.60E-02* 4.51E-02

1ka  -6.28E-02 6.90E-02 2 2K xa  2.08E-02 3.93E-02

2ka  4.96E-02* 3.01E-02 1 1K xa  1.94E-01** 7.49E-02

yya  5.48E-01** 1.55E-01 1yLa  1.40E-01* 7.97E-02

1 1L La  1.01E-01* 5.48E-02 2yLa  -1.99E-01** 7.65E-02

1 2L La  -1.56E-01** 4.76E-02 1 2L Ia  -2.63E-01** 2.35E-02

2 2L La  -4.83E-02 5.77E-02 2 1L Ia  -1.37E-01** 3.55E-02

1 1x xa  -3.50E-01** 4.45E-02 2 2L Ia  2.65E-01** 2.37E-02

2 2x xa  -1.13E-01* 6.24E-02 1 1L xa  -2.94E-01** 4.78E-02

1 2x xa  2.23E-01** 3.92E-02 1 2L xa  -1.03E-01** 4.95E-02

2 1I xa  1.27E-02* 5.94E-03 2 1L xa  4.24E-01** 5.30E-02

1 2I xa  1.18E-01** 3.95E-02 2 2L xa  -2.92E-02 5.85E-02

1 2I Ia  4.50E-03 4.79E-03 1 1L Ka  -1.54E-01** 7.85E-02

1 1K Ka  -2.36E-01* 1.25E-01 2 1L Ka  2.60E-01** 8.17E-02

1 2K Ka  1.69E-02 5.13E-02 1 2L Ka  1.34E-02 3.53E-02

2 2K Ka  -3.85E-03 2.25E-02 2 2L Ka  1.93E-02 3.68E-02

2yIa  -1.35E-02 1.19E-02 ta  7.32E-02** 6.44E-03

1yxa  1.03E-01* 6.19E-02 εσ  1.97E-01** 8.15E-03

2yxa  -2.18E-01** 7.85E-02 ελ  1.53E+00** 2.12E-01

Note: *(**) denotes statistical significance at the 10(5%) level 
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Table 3.  Properties of the directional distance function 

Variable Mean Standard deviation 

)i
hD y∂ ∂(.
G

 -7.41E-01 2.46E-02

1)i
hD I∂ ∂(.
G

 -1.20E-01 1.19E-02

2)i
hD I∂ ∂(.
G

 -1.24E-02 6.59E-03

1)i
hD x∂ ∂(.
G

 4.75E-01 1.61E-02

2)i
hD x∂ ∂(.
G

 3.92E-01 1.71E-02

1)i
hD K∂ ∂(.
G

 9.20E-02 2.94E-02

2)i
hD K∂ ∂(.
G

 6.50E-03 1.11E-02

1)i
hD L∂ ∂(.
G

 5.20E-02 2.07E-02

2)i
hD L∂ ∂(.
G

 1.34E-03 1.44E-02
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 Table 4. Cost function parameter estimates 

Parameter Estimate Standard Error Parameter Estimate Standard Error 

0b  2.76E+00 1.49E+01 2 1c Lb  3.27E+00 3.39E+00

yb  5.74E+00 4.70E+00 1 2c Lb  -1.36E+00 2.36E+00

2wb  -6.04E+01** 1.30E+01 2 2c Lb  -1.35E+00 2.92E+00

1cb  -3.91E+00 9.13E+00 1kb  -1.76E-03 1.44E-03

2cb  2.67E+01** 9.30E+00 2kb  3.64E-03 1.98E-02

1Lb  3.40E+00 4.25E+00 1 1k kb  -7.83E-04** 3.85E-04

2Lb  -6.22E+00* 3.67E+00 1 2k kb  -3.80E-04 2.75E-04

yyb  2.59E+00* 1.59E+00 2 2k kb  -7.77E-03** 1.58E-03

2 2w wb  1.30E+02** 3.03E+01 1ykb  1.71E-03** 6.01E-04

1 1c cb  8.61E+01** 2.62E+01 2ykb  1.25E-02** 4.37E-03

1 2c cb  2.53E+00 6.14E+00 2 1w kb  1.78E-03* 1.08E-03

2 2c cb  -2.88E+01** 8.59E+00 2 2w kb  2.09E-02 1.47E-02

1 1L Lb  1.76E+00* 9.93E-01 1 1k cb  -8.99E-04 1.04E-03

1 2L Lb  1.18E+00 8.64E-01 2 1k cb  5.62E-04 1.13E-03

2 2L Lb  6.78E-01 1.04E+00 2 2k cb  -4.37E-02** 1.70E-02

2ywb  2.19E+01** 3.84E+00 1 1k Lb  -5.26E-04 3.40E-04

1ycb  -7.15E+00** 3.60E+00 1 2k Lb  3.07E-04 3.18E-04

2ycb  -4.32E+00 4.35E+00 2 1k Lb  -1.14E-03 2.96E-03

1yLb  -3.25E+00** 1.18E+00 2 2k Lb  9.58E-03** 4.40E-03

2yLb  1.00E+00 9.76E-01 tb  -8.23E-01 6.95E-01

2 1w cb  -8.00E+01** 2.44E+01 ξσ  1.93E-01** 6.81E-03

2 2w cb  3.47E+00 7.65E+00 ξλ  1.69E+00** 1.96E-01

2 1w Lb  -1.27E+01** 3.75E+00  

2 2w Lb  6.58E+00** 3.30E+00  

1 1c Lb  6.73E+00** 3.36E+00  

Note: *(**) denotes statistical significance at the 10(5%) level 
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Table 5.  Properties of the cost function 

Variable Mean Standard deviation 

1)C K∂ ∂(.  -1.43E-03 2.40E-02

2)C K∂ ∂(.  -4.19E-03 2.24E-02

2)C w∂ ∂(.  4.37E-01 1.25E-01

1)C c∂ ∂(.  1.61E-01 5.49E-02

2)C c∂ ∂(.  1.16E-01 4.09E-02
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Table 6.  Efficiency ratings 

Variable Mean Standard deviation 
i
hTE  

0.892 0.105
hOE  

0.882 0.091
i
hTI  

0.107 0.105
hOI  

0.117 0.094
hAI  

0.010 0.097
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