How do agricultural policies influence farmland concentration? The example of France

Laurent PIET, Yann DESJEUX, Laure LATRUFFE, Chantal LE MOUËL UMR1302 INRA-Agrocampus SMART, Rennes, France

Motivation and objectives

> Two typical simultaneous trends in developed countries
\downarrow Number of farms
\uparrow Average size of farms in terms of UAA
$>$ Does this mean farmland concentration (FLC) ?
The distribution of hectares among farms
> Objectives
Measure farmland concentration

$$
F L C=0
$$

Distribution in space and evolution in time
with particular attention on agricultural policies

Measuring farmland concentration

> The Lorenz curve and the Gini coefficient

Size Class	\# farms	\# hectares
Less than 1 ha	33015	12874
1 to 2 ha	28832	41894
2 to 5 ha	53985	179104
5 to 10 ha	44686	319130
10 to 20 ha	50787	729405
20 to 50 ha	98791	3361998
50 to 75 ha	62387	3846365
75 to 100 ha	44111	3825540
100 to 150 ha	49223	5972464
150 to 200 ha	22232	3812169
More than 200 ha	18871	5254886

A parametric Lorenz curve

> A functional form proposed by Rasche et al. (1980)

$$
L(u)=\left(1-(1-u)^{\alpha}\right)^{1 / \beta}
$$

$>$ Then

$$
G=1-\frac{2}{\alpha} B(1 / \alpha, 1+1 / \beta)
$$

$>$ In this example:
Empirical Gini: 0.581
Parametric Gini: 0.587

A 2-step econometric approach

> Step 1: a non linear least-square fit of the Lorenz curve

$$
\begin{aligned}
& h=L(n)+\varepsilon \\
& \text { with } \quad L(n)=\left(1-(1-u)^{\alpha}\right)^{1 / \beta} \\
& \\
& \quad \alpha=f\left(X ; \theta_{\alpha}\right) \\
& \\
& \\
& \\
& \\
& \\
& 0<\alpha\left(X ; \theta_{\beta}\right) \\
& 0<\alpha \leq 1
\end{aligned}
$$

> Step 2: a linear regression

$$
\hat{G}=\gamma_{0}+\sum_{l} \gamma_{l} \cdot Z_{l}+\varepsilon
$$

Data used

> Lorenz curves: Farm Structures Surveys for France
12 years from 1963 to 2007
90 "départements" (NUTS3)
11 size classes (except for some dates: min. 8, max. 13)
> Explanatory variables
Step 1: constant, trend, fixed effects and interactions
Step 2: variables which are assumed to

- change the number and size of farms
- alleviate or favor concentration
agricultural (incl. structural) policies control variables
At the "département" level and lagged variables whenever possible

Results - step 1 (1/2)

$>$ Adjusted $\mathrm{R}^{2}=.999$ (11520 obs.)
> Distribution of \hat{G}

Results - step 1 (2/2)

$>$ The effect of time

Parameter	Estimate
α	$0.00307^{* * *}$
	(0.00084)
β	$-0.00489^{* * *}$
	(0.00085)

Results - step 2

	Estimate	Robust Std. Err	t stat.	$\mathrm{P}>\|\mathrm{t}\|$
Constant	0.1035709	0.4607447	0.22	0.822
Av. UAA 1967	$\mathbf{- 0 . 0 0 0 7 5 2 2}$	$\mathbf{0 . 0 0 0 2 5 6 1}$	$\mathbf{- 2 . 9 4}$	$\mathbf{0 . 0 0 3}$
Share >50 years old	0.8554284	0.6542553	1.31	0.191
Av. rate decrease N	-0.0852655	0.0741984	-1.15	0.251
Income / LFU (-1)	0.0000003	0.0000002	1.56	0.119
Milk Quota	$\mathbf{0 . 0 7 1 2 3 7 5}$	$\mathbf{0 . 0 4 2 0 4 5 0}$	$\mathbf{1 . 6 9}$	$\mathbf{0 . 0 9 1}$
Mountain. Area	$\mathbf{- 0 . 0 3 9 2 5 4}$	$\mathbf{0 . 0 0 6 9 9 4 4}$	$\mathbf{- 5 . 6 1}$	$\mathbf{0 . 0 0 0}$
1 $^{\text {st }}$ Pillar (-1)	-0.0000507	0.0000916	-0.55	0.580
2 $^{\text {nd }}$ Pillar (-1)	$\mathbf{- 0 . 0 0 0 9 3 5 6}$	$\mathbf{0 . 0 0 0 3 6 5 1}$	$\mathbf{- 2 . 5 6}$	$\mathbf{0 . 0 1 1}$
1P+2P / Prod. (-1)	$\mathbf{- 0 . 1 6 1 6 2 4 9}$	$\mathbf{0 . 0 4 7 4 5 1 0}$	$\mathbf{- 3 . 4 1}$	$\mathbf{0 . 0 0 1}$
Farmer Settl. (-1)	$\mathbf{- 0 . 0 0 0 0 1 9 1}$	$\mathbf{0 . 0 0 0 0 1 0 7}$	$\mathbf{- 1 . 7 9}$	$\mathbf{0 . 0 7 3}$
Early Retir. (-1)	$\mathbf{0 . 0 0 0 3 7 1 3}$	$\mathbf{0 . 0 0 0 1 9 5 3}$	$\mathbf{1 . 9 0}$	$\mathbf{0 . 0 5 8}$
Consol. area (-1)	-0.0002859	0.0002043	-1.40	0.162
SAFER's activity (-1)	0.0022338	0.0017889	1.25	0.212
Share Agr. added v. (-1)	1.2399170	1.0250420	1.21	0.227
Share UAA (-1)	$\mathbf{- 0 . 2 5 7 5 1 2 8}$	$\mathbf{0 . 0 1 8 0 5 2 5}$	$\mathbf{- 1 4 . 2 6}$	$\mathbf{0 . 0 0 0}$
Ar. land price (-1)	$\mathbf{0 . 0 0 0 0 1 6 3}$	$\mathbf{0 . 0 0 0 0 0 1 9}$	$\mathbf{8 . 5 8}$	$\mathbf{0 . 0 0 0}$

> 988 observations
$>$ Adjusted $\mathrm{R}^{2}=0.434$
> Significant at 5\%
With positive impact
With negative impact
$>$ Significant at 10\%

Main conclusions

> FLC: a multi-dimensional concept
$>$ Increase in FLC is not a systematic feature
> Main factors influencing FLC
Land scarcity
Structural policies (incl. milk quotas)
CAP 2nd pillar payments

Perspectives

$>$ A one-step method

Directly derive the impact of explanatory variables on G

$$
\hat{\gamma}_{l}=\frac{\partial \hat{G}}{\partial X_{l}}=\hat{\alpha}_{l} \frac{\partial \hat{G}}{\partial \alpha}+\hat{\beta}_{l} \frac{\partial \hat{G}}{\partial \beta}
$$

But puzzling preliminary results:

2 steps		1 step		
	Estimate	$\mathrm{P}>\|\mathrm{t}\|$	Estimate	$\mathrm{P}>\|\mathrm{t}\|$
\ldots				
Share >50 years	0.8554284	0.191	-0.2059332	0.413
1P+2P / Prod (-1)	-0.1616249	$0.001^{* * *}$	-0.1840513	0.392
SAFER's act. (-1)	0.0022338	0.212	0.0012697	$0.026^{* *}$
Share UAA (-1)	-0.2575128	$0.000^{* * *}$	-0.2001216	$0.000^{* * *}$

Any comment or suggestion?

Thank you for your attention!

