

Modelling the effects of an abolition of the EU sugar quota on internal prices, production and imports

114th Seminar of the EAAE 'Structural Change in Agriculture' Berlin, 15 – 16 April 2010 Stephan Nolte

Introduction

- EU-CMO Sugar Reform in 2006
 - Production quotas reduced in restructuring from 17.4 to 13.3 million tons
 - Internal price reduced from > 700 € to < 500 € per ton</p>
 - No directly subsidized exports anymore, crosssubsidized exports within WTO limit
 - Preferential access to various country groups increased from 2 to ~3-5 million tons

Introduction

- Current CMO sugar expires after 2014/15
- Abolishment of Quotas possible as of 2015/16
 - As on the dairy market, will lead to increased production in some member states
 - Lower internal market price
 - Lower production in other member states (possibly liquidation of sugar sectors)
 - Discouragement of preferential imports

Research Questions

- Which member states will increase, which will decrease or cease sugar production?
- What will the internal price be?
- How are preferential imports affected?
- What is the effect on the world market price?
- Will the EU become an exporter again?

Outline

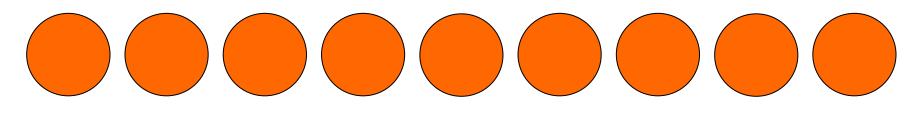
- 1. Introduction
- 2. Model
- 3. Scenarios
- 4. Results
- 5. Conclusions

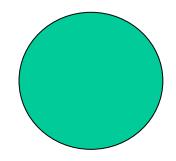
Model

- Global Sugar Model with 106 countries
- Quotas, ad valorem and specific tariffs, TRQ, direct payments, export subsidies
- Supply Functions of EU member states allow abandoning production at positive price
- Remainder of supply and demand functions is isoelastic

Model

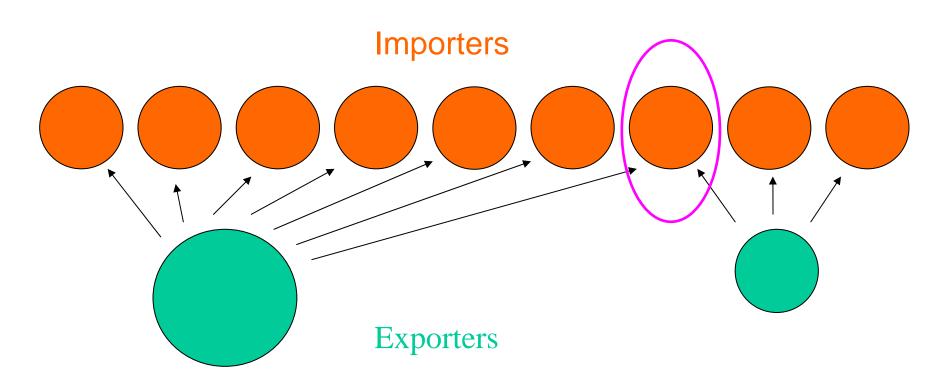
- Calibrated Spatial Price Equilibrium (SPE) Model
- Spatial Model necessary to simulate preferential trade relationships
- Original SPE (Enke, Samuelson, Takayama and Judge) behaves like an optimisation model
- Not able to reproduce observed matrices of trade
- Linear programming formulation restricts the possible number of trade flows



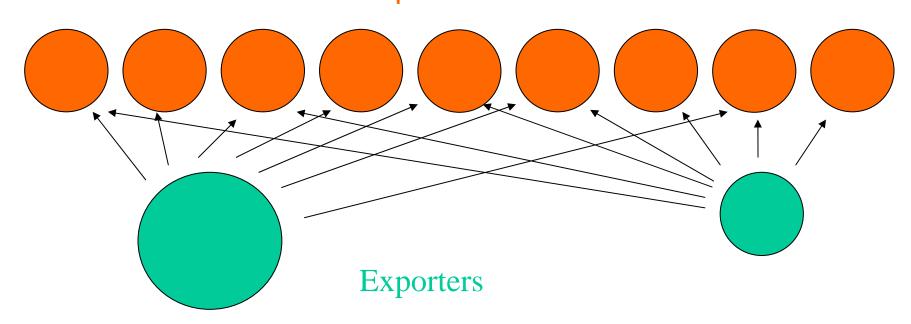


LP transport model

Importers



LP transport model



Observed trade

Importers

Calibrated SPE

- Original price transmission equation:
- $P_{exporter} + freight + tariffs \ge P_{importer}$ $\perp trade_{exp*imp}$
- Calibrated price transmission equation:
- $P_{exporter} + fr + tar + \underline{d + q^* trade_{exp*imp}} \ge P_{importer}$ $\perp trade_{exp*imp}$

Estimation of the Model

- Trade data, which is very poor, is made consistent with sugar balances of model regions
- Analogue to the three steps of PMP:

1. Original SPE Model is solved with observed trade flows, prices and quantities fixed

Estimation of the Model

- Shadow prices of the trade flow constraints are added to observed transport costs and trade policy parameters
- 3. Model is solved with calibrated cost terms and replicates observed trade matrix

Estimation of the Model

- Parameters of the quadratic cost terms (d & q)
 - First order derivative will have a large influence on the simulation behaviour of the calibrated model
- Hypothesis: Costs increase with increasing trade
 - q must be positive
- Economic Explanations:
 - Exporters minimize risk by spreading their exports
 - Exporters are willing to pay a premium to be present in a market

Estimation of the Model

- OLS regression of shadow costs from step 2 as a function of the share of exports on this route in total production of the exporter
- shadow costs_{j,i} = $\beta_0 + \beta_1$ * prod_shr_i + $\varepsilon_{j,j}$
- β_1 : 0.614; r²: 0.024; F-test: <0.0001

Outline

- 1. Introduction
- 2. Model
- 3. Scenarios
- 4. Results
- 5. Conclusions

Scenarios (2015/16)

- Reference Scenario:
 - Quota system continued
 - World market price develops as forecasted by FAPRI (2009)
- Alternative Scenarios:
 - Abolition of quota
 - Different developments of world market price
 1 standard deviation below/above FAPRI projections

Outline

- 1. Introduction
- 2. Model
- 3. Scenarios
- 4. Results
- 5. Conclusions

Results

	Quota					Quota Abolition						
	Lov P _V	VVM	FAPRI		High P _{WM}		Low P _{WM}		FAPRI		High P _{∨M}	
P_{WM}	2	204	251	\ /	298	\ /	204		250		294	
P _{EU}	3	379	431	\mathbf{M}	490		359	Y	370	\mathbf{M}	378	
Demand _{EU}	18	8.1	17.9	Ш	17.7		18.2		18.2	\parallel	18.2	
Imports _{EU}	į	5.6	5.0	/	4.7	Λ	4.8	X	2.9	$/\!\!\setminus$	1.7	
Supply _{EU}	12	2.8	13.3	/ \	13.3	/\	13.9	/ \	15.8	/ \	17.0	
Source: Own Simulations. In real 2004/05 €/ million tons WSE												

			Quota		Quota Abolition				
	Quota 2010	Low P _{WM}	FAPRI	High P _{wm}	Low P _{WM}	FAPRI	High P _{WM}	Gi.	
AT	351	351	351	351	347	388	415		
BE	676	676	676	676	780	886	957	S	
CZ	372	372	372	372	392	424	446	nool	
DK	372	372	372	372	364	412	445	Source:	
ES	498	306	498	498	171	245	295	Own	
FI	81	81	81	81	68	76	82		
FR	3,437	3,437	3,437	3,437	3,721	4,322	4,673	Simulations.	
GE	2,898	2,898	2,898	2,898	3,483	3,920	4,216	ula	
GR	159	43	125	159	7	27	40	tion	
HU	105	105	105	105	190	219	238		
IT	508	361	508	508	210	293	349	1000 tons	
LT	90	64	90	90	47	56	62	0 tc	
NL	805	805	805	805	861	961	1,030		
PL	1,406	1,406	1,406	1,406	1,606	1,799	1,930	WSE	
PT	10	10	10	10	3	7	10	E	
RO	105	51	66	80	47	52	55		
SK	112	112	112	112	107	119	128		
SW	293	293	293	293	318	343	359	pag. 20	
UK	1,056	1,056	1,056	1,056	1,127	1,226	1,294		

Results

		Quota		Quota Abolition				
	Low P _{WM}	FAPRI	High P _{WM}	Low P _{WM}	FAPRI	High P _{WM}		
CXL	575	575	575	575	575	575		
BALKANS	278	250	252	208	181	98		
LDC	1,311	1,030	1,032	879	157	0		
ACP	3,513	3,088	2,756	3,140	2,146	1,057		
Total	5,678	4,944	4,616	4,801	3,059	1,731		

Outline

- 1. Introduction
- 2. Model
- 3. Scenarios
- 4. Results
- 5. Conclusions

Conclusions

- Abolition of the quota system leads to increased production in the centre of the EU
- The domestic price of the EU decreases
- World market price almost unaffected
- Lower production in countries at the southern and northern boundaries
- Preferential imports decrease, as well

Conclusions

- All simulated effects increase in size, the higher the world market price
- World market price has an influence on the community price via preferential imports
- Transmission of world market price fluctuations are dampened if quota system is abolished
- Quota abolition has no significant impact on the world market price

Conclusions

- Approach of Calibrated SPE has proven the ability to reproduce observed base data and to simulate realistic results
- Goes beyond previous approaches of calibration (Paris et al., 2009) and alternative models to the SPE
 - Nonlinear cost terms
 - Economic Explanation/Econometric specification