### Regional Asymmetries in Firm Size

Silke Hüttel\*, Anne Margarian\*\*, Vanessa von Schlippenbach\*\*\*

\*Humboldt-Universität Berlin, Department of Agricultural Economics and Rheinische Friedrich-Wilhelms-Universität Bonn \*\*Johann Heinrich von Thünen Institute, Institute of Rural Studies \*\*\*DIW Berlin, Information Society and Competition

114th EAAE Seminar Structural Change in Agriculture 16 April 2010 -Introduction

### Structural Change in Western Agriculture

#### Observed

- Declining number of farms and increasing average farm size
- Substantial differences in the regional farm size structure
- Persistence of farms in their size classes
- Regionally differing patterns of structural change

#### Unsolved Questions

- How do such regional asymmetries in firm size arise?
- How can these be used to explain regionally differing patterns of structural change?

#### Introduction

# Regional Asymmetries, Structural Change and the Production Factor Land

- Growth only if others decline or exit determining the land availability for growing farms
- Immobility and shortage of land
  - $\Rightarrow$  interrelation of farmers' actions
- Conditions in the land market, like potential competitors, land availability
  - $\Rightarrow$  impact on structural change in a region

-Introduction



Show how the regional farm size structure...

- Determines exits that in turn induce free land capacities
- Impacts the allocation of the free land capacities in a region

BY MEANS OF...

- Theoretical model
- Empirical illustration of the theoretical findings

#### $\square$ Introduction

### Outline

- Theoretical background from the literature
- Theoretical modelling and results
- Empirical Illustration
- Concluding remarks

L Theoretical Background

### Industry Dynamics in the Literature

#### KNOWN STRUCTURE-CONDUCT-PERFORMANCE PARADIGM

- One-sided causality between market structure, the behavior of firms in the market and the efficiency of firms
- Concentrated market structure ⇒ coordinated behavior of firms ⇒ increase of firms' profits
- Problem: given market structure
- BUT OBSERVED SKEWED FIRM SIZE DISTRIBUTION:
  - Structure not exogenous
  - Entry and exit to markets driven by future expectations determined by competition in the market

L Theoretical Background

### Characteristics of Industry Dynamics

Literature with the aim to explain regional asymmetries in firm size

- Entry & exit under uncertainty/real options with re-allocation of resources in strategic games
  - $\Rightarrow$  Higher survival probability of the large
- Competition in declining industries using deterministic models
  - $\Rightarrow$  Strategic liability of the large
- Asymmetries result from
  - Initial differences in economic fundamentals and strategic positions in a capacity accumulation game
  - Ex-ante identical firms' interaction under uncertainty
- $\Rightarrow$  Asymmetric market equilibrium

### Idea: Endogenous Market Structure

- New: endogenously determined availability of capacity
- Land is not a freely trade resource
- Exit determines the availability of free land crucial for growth of surviving farms
- Competition for scarce resources in the capacity market

### Exit and Allocation of Capacity: Theoretical Framework

- Agricultural market with *n* price-taking firms
- Production q<sub>i</sub> (homogenous), intermediate goods market with perfect competition at price p
- Large / and small firms s differing in
  - Initial capacity  $k_i$  (land endowment):  $k_l > k_s$
  - U-shaped marginal production cost  $c_i(q_i) = (1 - \alpha_k \cdot q_i + q_i^2)/2$  where  $\alpha_l > \alpha_s$ that is: larger firms benefit from investments: marg cost increase 'slower' in quantity
  - Additional capacity:  $\tilde{k}_i$
- Total regional land capacity  $K = \sum k_l + \sum k_s$
- Firms' production may be capacity constrained

### The Three-Stage Game

- Firms decide: quit production, sell their initial capacity or continue with production
- If at least one firm has decided to exit: land market
   ⇒ Capacity allocation: efficient Vickrey auction
- **3** Firms decide about their production quantities in the downstream market and the profits they realize
- $\Rightarrow$  Solved via backward induction

### Solving the Three-Stage Game Step Three: Downstream Competition

- Decision about produced quantities
- Profit maximizing quantity subject to the capacity constraint:  $q_i^* = \arg \max_q \pi_i(q_i, k_i + \tilde{k}_i, \cdot)$ subject to  $0 \le q_i \le \underbrace{k_i + \tilde{k}_i}_{\text{total capacity}}$
- If capacity constraint is binding: firms' production is determined by the capacity: q\* = k<sub>i</sub> + k
  <sub>i</sub>
- If capacity constraint is not binding: firms produce profit maximizing amount of the good  $q^* = q^C$

# Solving the Three-Stage Game

Step Two: The Land Market Auction

- Single auctioneer sells available land resources on behalf of exitors without incentives to act strategically
- Vickery mechanism:
  - ensures efficient allocation
    - $\Rightarrow$  bidder with highest valuation wins and gets the land
  - bidder: no incentive to misrepresent his valuation as price cannot be affected
  - bid: revenue resulting from additional resources
  - winner has to pay amount according the highest losing bids without his own
  - $\blacksquare$  auctioneer pays exitors: average price weighted by the sold capacity  $\omega$

Regional Asymmetries in Firm Size

L Theoretical Modelling

# Solving the Three-Stage Game

Step Two: The Land Market Auction (con'd)

Bid function  $b(\tilde{k}_i) = \partial v(\tilde{k}_i) / \partial \tilde{k}_i$ 

- Derived from individual valuation v(k
  <sub>i</sub>) for an add. unit of capacity = payoff of the capacity
- Inverse demand function
- Land demand: aggregate individual demand functions
- Land supply: fixed to K
- Get: market clearing price  $\rho^c$  to obtain winner
- Bidders' payment  $\phi_i$  according to highest loosing bids
  - $\Rightarrow$  Reflects opportunity costs for the won units

### Theoretical Results: Auction

 $\Rightarrow$  Larger firms: bid more for additional land due to scale effects

 $\Rightarrow$  Efficient allocation: a higher share of land goes to large farms rather than to the small farms

 $\Rightarrow$  If capacity pool is small – only large farms may get additional capacity

#### Solution

Larger firms allocate more additional quantity than small firms. Note, the larger the firms are, the lower is their newly accommodated capacity. Regional Asymmetries in Firm Size

L Theoretical Modelling

### Solving the Three-Stage Game Step One: Exit

Exit, if

Profits of continuing π<sub>i</sub>(q<sub>i</sub>, k<sub>i</sub> + k̃<sub>i</sub>, ·) minus payment if additional capacity is bought φ<sub>i</sub>

equals the earnings leaving the market



But:

- $\Rightarrow$  Large firms value additional land higher than small farms
- $\Rightarrow$  Large farms have a low incentive to leave the market

#### Corollary

Small firms are more likely to exit the market.

### Theoretical Results: Exit

 $\Rightarrow$  Higher valuation for additional capacity of the large firms  $\Rightarrow$  A higher number of initially large firms induces a higher exit rate of the small firms

#### Solution

The more asymmetric the initial size distribution in a market is, the higher is the exit rate and the higher is the share of small firms leaving the market.

NOTE, PRELIMINARY  $\Rightarrow$  Proofs still only numerical (!)

Empirical Illustration

### Data

- Illustrate the relationship between the farm structure, exits and growth of farms
- Farm-level data: agricultural census West Germany
- 321 districts for 2 time periods: 1999-2003 & 2003-2007
- Growth: measured in increase in land endowment
- Exit measured within each period
- Asymmetries measured by the *Gini-coefficient*: high Gini
  - $\Rightarrow$  Strong asymmetries in firm size in a region
  - $\Rightarrow$  Land is unequally distributed among farms

Empirical Illustration

### Growth of the Large Farms



- Low growth rates under symmetry
  - $\Rightarrow$  Lower incentive to leave the market
- High growth rates under asymmetry

 $\Rightarrow$  Higher incentive of small to exit, availability of land higher

Cash crop regions with low capital intensity (note, under higher capital intensity: growth rate lower at all under asymmetry)

18 / 22

Empirical Illustration

### Growth of the Large Farms (con'd)

#### THEORETICAL RESULT:

- Larger firms get a higher share of newly available resources
- Interrelation: growth directly depends on exit
- But: if pool of newly available resources is small
  - $\Rightarrow$  only large firms get additional capacity
  - $\Rightarrow$  may foster further aymmetries

#### EMPIRICAL RESULTS:

- Significant positiv impact of the exit rate on the growth rate of the large under a low Gini
- I.e. under symmetry stronger dependency of growth on the exit rate
- But under asymmetric firm sizes:

 $\Rightarrow$  large farms grow irrespective of availability of land, impact not significant

└─Summing Up

### Summing Up

#### Shown:

- Scarcity of newly available land & relatedness of farm exits and growth
  - $\Rightarrow$  induce the availability of additional land to become endogenous
- Consequences are ...
  - large farms grow more than small farms
  - the lower the total supply of land is, the higher is the further differentiation of farm sizes
  - large farms' probability to exit is very low
    - $\Rightarrow$  small farms have higher exit probability

Summing Up

### Critical Issues

- Theoretical result are mainly driven by assumptions
  - that farms are ex-ante heterogenous
  - wrt scale effects
- Endogenous valuation not yet modelled: decision about cost structure (investment) necessary
- So far only endogenous determination of the availability of newly available resources – still a novelty!
- Only empirical illustration, no structural model

#### Summing Up

### Inter-Relation of Exit and Growth under Asymmetries

Markov Chain Model Adopted from Huettel/Margarian 2009



- Highest exit of the small, Gini ↑ exit rate ↑
- Medium farms shrink and grow if Gini ↑

-

4 D N 4 B N 4 B N 4 B N