Coordination and allocation on land markets under increasing scale economies and heterogeneous actors - an experimental study

Presentation at the 114th EAAE Seminar
'Structural Change in Agriculture', Berlin, Germany, April 15-16, 2010
Alfons Balmann*, Konrad Kellermann*, Karin Larsén*, Serena Sandri** and Christian Schade**
*Leibniz Institute of Agricultural Development in Eastern and Central Europe, Germany (IAMO) **Institute for Enterpreneurial Studies and Innovation Management, School of Business and
Economics, Humboldt-Universität of Berlin, Germany

Introduction

- Economies of scale often not exploited in Western agriculture
- dominance and persistence of small family farms (Balmann 1994, 1995)
- "Too little" participation in collaborative arrangements that allow small firms to exploit economies of size
- Possible explanations for unexploited increasing returns
- transaction costs limit
- coordination failures among heterogeneous actors

Introduction

- This study focuses on the last explanation, i.e. coordination failures among heterogeneous actors
- Balmann $(1994,1995)$
- establishing large arable farms in small farm agriculture can require price differentiation on land market
- Aurbacher, Lippert, Dabbert (2007)
- establishing machinery cooperations can require price differentiation

Objective

- Research question
- Can price differentiation be achieved among heterogeneous actors?
- Approach
- Case study: land market problem of Balmann (1995)
- Laboratory experiments with students
- An agent-based model with computationally intelligent agents using genetic algorithms provides a normative benchmark prediction

Outline

- Description of the land market example
- Experimental setting
- Benchmark prediction
- Experiment results
- Conclusions and further research

A land market example

Imagine the following situation

- A profit maximizing entrepreneur characterized by increasing returns wants to „take over" a certain number of neighboring small farms
- The small farmers are assumed to
- be equally large in terms of land
- have land with identical physical properties
- have heterogeneous reservation prices (opportunity costs) for their land
- have private information on their reservation prices (but know the distribution of the others' reservation prices.

A land market example

A land market example

Potential welfare gain $=A-B$

Experimental setting

- Four scenarios (treatments):
- two different levels of potential welfare gain: „tight" and „generous" room for negotiation.
- two group sizes: „small" (7 players) and „large" (14 players)

		Group size	
		"Small" (7 players)	"Large" (14 players)
Potential welfare gain	"Tight" $(A-B=352)$	Treatment 1	Treatment 3
	"Generous" (A-B=704)	Treatment 2	Treatment 4

Experimental setting

Example of parameters (treatment 1:7 players, tight room for negotiations)**

		Assumptions				
		Players		Entrepreneur		
Player	Sum of land units	Opportunity cost of land unit*	Average opportunity cost	Total value of production*	Marginal value of production	Average value of production*
1	1	80	80	12	12	12
2	2	160	120	52	40	26
3	3	240	160	232	180	77.3
4	4	320	200	732	500	183
5	5	400	240	1382	650	276.4
6	6	480	280	2022	640	337
7	7	560	320	2592	570	370.3

* Information presented to the players
** Total potential welfare gain
= Total value of production (at 7 players) - sum of players opportunity costs
$=2592-2240=352$

Experimental setting

- 40 repetitions/rounds
- Entrepreneur is computerized and profit-maximising
- Opportunity costs randomly assigned to the participants in each round
- Each player has information about
- His/her own opportunity costs
- The distribution of the other players' opportunity costs
- The entrepreneur's production function (and average production)
> Players are well informed!

Experimental setting

- In each round, every player makes a bid (an ask)
- After every round, each player receives feedback on
- the number of transactions occured
- acceptance or decline of the players own ask
- the own payoff in the round
- The players are not informed about the other players' asks and payoffs

Experimental setting

- The subject pool consisted of 98 participants (28 in treatments 2, 3 and 4; 14 in treatment 1)
- Monetary incentives were given that are proportional to the players performance in the game

What should we expect?

- Benchmark case
- game theoretic equilibrium for bidding behavior
- agent-based simulation with genetic algorithm learning
- In the ABM, the entrepreneur and small farmers are modeled as agents
- entrepreneur and small farmers interact repeatedly on market
- small farmers "learn" optimal individual bids for given opportunity costs by applying individually a genetic algorithm (GA) (Dawid, 1999)
- the model converges towards a game theoretic equilibrium

Benchmark case -
 simulations with agent-based model

Outcome of GA: treatment 1

Benchmark case -
 simulations with agent-based model

Outcome of GA: treatment 2

Benchmark case -
simulations with agent-based model

The results from the genetic algorithms, i.e. the game theoretic equilibrium, suggest that:

- The farmers/players extract all welfare gain/rent
- The rent is distributed equally among the players with the exception that no player can receive a price higher than the „market price"

Experiment results

- Experiments were carried out in September and October 2009 with students
- Players not always playing rationally
- Some exceptionally low asks
- some asks lower than the opportunity cost of player (the share in each session varies between 0.4\% and 8.9\%)
- behavioral explanation: analogy of winner's curse (Thaler, 1988): people want to "win" the deal even if they loose money
- Some exeptionally high asks
- Asking for too much - no risk to loose
- Possibly also typing errors

Experiment results

Distributions of number of accepted asks per round

Treatment 1

Tight room for negotiation

Treatment 3

Treatment 4

Experiment results

Average share of accepted asks by treatment

	Treatment			
	1 7 players, tight room $(\mathrm{N}=80)$	2 7 players, generous room $(\mathrm{N}=160)$	3 14 players, tight room $(\mathrm{N}=80)$	4 14 players, generous room $(\mathrm{N}=80)$
Average share	0.39			
accepted asks				
(standard deviation)	(0.44)	0.52	0.26	0.51
P-value, Mann-	0.054			
Whitney U-test*	$0.44)$	(0.41)	(0.44)	

* Tests whether the data comes from two different populations (the null hyphothesis is that the two samples are drawn from identical populations)

Experiment results

Average share of accepted asks by treatment

	Treatment			
	1 7 players, tight room ($\mathrm{N}=80$)	3 14 players, tight room $(\mathrm{N}=80)$	2 7 players, generous room $(N=160)$	4 14 players, generous room $(\mathrm{N}=80)$
Average share accepted asks (standard deviation)	$\begin{gathered} 0.39 \\ (0.44) \end{gathered}$	$\begin{gathered} 0.26 \\ (0.41) \end{gathered}$	$\begin{gathered} 0.52 \\ (0.44) \end{gathered}$	$\begin{gathered} 0.51 \\ (0.44) \end{gathered}$
P-value, MannWhitney U-test*	0.74		0.96	

* Tests whether the data comes from two different populations (the null hyphothesis is that the two samples are drawn from identical populations)

Experiment results

- Findings (I)
- In general the share of accepted asks is surprisingly low
- < 50% in treatments with tight room for negotiation
- $\sim 50 \%$ in treatments with high room for negotiation
$>$ highly inefficient outcome
- Smaller groups are (slightly) more successful (although not statistically significant)
- Rate of acceptance does not increase over time
- players do not learn to coordinate (even after 40 rounds)

Experiment results

Comparison with benchmark case - Treatment 2

$>$ in average too high asks for low and very high opportunity costs
>bidding more efficient as too high asks are more costly

Experiment results

Comparison with benchmark case - Treatment 4

$>$ in average too high asks for lower and high opportunity costs (not just outliers)

Experiment results

Regression results, FE-model

	Dependent variable: Ask				
	7 players			14 players	
	Tight room	Generous room	Tight room	Generous room	
Constant	$153000 * * *$	$166000 * * *$	$57100 * * *$	$86600^{* * *}$	
	(22100)	(14800)	(6330)	(19000)	
Opportunity cost	$0.74^{* * *}$	$0.83^{\star * *}$	$0.90^{* * *}$	$0.98 * * *$	
	(0.062)	(0.041)	(0.035)	(0.11)	

Experiment results

- Findings (II)
- Individuals consider their opportunity costs
- „Anchoring and adjustment" (Tversky and Kahneman, 1974).
- Problem: mark-ups too high among low and high opportunity cost players
> "Too high" mark-ups of low and high opportunity cost players could be related to some form of inequity aversion (Fehr and Schmidt, 1999), but with emphasis on different dimensions:
- Low opportunity cost players: expect equal price
- High opportunity cost players: expect to receive the same mark-up.
- The dimensions - price and mark-up - are likely to be considered as „scarse" or „prominent" by the respective individual players.

Conclusions

- The experimental results suggest that
- Players do not reveal information although this is costly
- Players with low and high opportunity costs generally ask for „too much"
- When potential gain is larger, the number of accepted asks is higher, i.e., when too high asks are more costly
- Experiments provide evidence for market failures and cooperation deficits as reasons for unexploited increasing returns

Further research

- Conduct the experiments with
- individualized opportunity costs
- with farmers instead of students
- with other auction schemes (e.g. spectrum auctions)
- Identify which market mechanisms that are needed in order to support coordination so that reallocation to more efficient outcomes can be achieved.

Thank you for your attention!

