

UNIVERSITY OF PRIMORSKA

Farm growth in Hungary, Slovenia and France

Lajos Zoltán Bakucs; Štefan Bojnec; Imre Fertő; Laure Latruffe

Structural Change in Agriculture: Modeling Policy Impacts and Farm Strategies Berlin, April 15-16, 2010

Outline

- Motivation
- Data and methodology
- Results
- Conclusions

Motivation

- There is a wealth of literature on Gibrat's Law in industry
 - However research on the growth of farms is still limited
 - Less research on transition countries
 - No cross-country comparison
- The aim of the paper is to investigate whether Gibrat's Law holds for French, Hungarian and Slovenian

Empirical evidences

- Upton and Haworth (1987) UK,
- Bremmer et al (2002) the Netherlands
- Kostov et al. (2005) Northern Ireland Reject Gibrat's Law
- Weiss (1999)

Reject Gibrat's Law, and found that 'age, schooling and sex of the farm operator, size of farm family, and off-farm employment as well as initial farm size, significantly influence farm growth and survival

Hennings and Katchova (2005) – U.S.

Financial management, cost cuts, resource management and income maximising strategies have positive influence upon farm capital growth rate

 Bakucs and Fertő (2009a, 2009b) – Hungary Reject Gibrat's Law if all farms (corporate and family) are considered together, regardless of the size measure used

Measuring farm size

- Acreage farmed, livestock number, total capital value, gross sales, total gross margin and net income
- Output value measures
 - are subject to inflation, and changes in relative prices
- The physical input measure
 - since farms are characterised by a non-linear production technology, this changes in size involve changes in the mix and proportions of inputs used

Data

- FADN data
- Dairy and field crop farms
- 2001-2007: France, Hungary
- 2004-2006: Slovenia
- Size measures:
 - Field crop farms:
 - utilised agricultural area, hectares
 - labour: AWU
 - Dairy farms
 - livestock unit: total number of livestock heads
 - labour: AWU

Model

$$\log S_{i,t} = \beta_0 + \beta_1 \log S_{i,t-1} + \varepsilon$$

Where

- $S_{i,t}$ is the size of farm i at time
- $S_{i,t-1}$ is the size of farm i at the previous period

If $\beta_1 = 1$, growth rate and initial size are independently distributed

If $\beta_1 < 1$ small farms tend to grow faster than large farms

If $\beta_1 > 1$ larger farms grow faster than smaller farms

Methodology

- Two-step Heckman selection model
- Quantile regressions
- Panel unit root tests
 - Levin et al. (2002) method (common unit root process)
 - Im et al. (2003) method (assuming individual unit root processes)
 - ADF-Chi square
 - PP-Chi square

		Dair	y farms	Crop	farms
		Livestock	Labour in	Arable land	Labour in
		units	AWU	in hectares	AWU
Hungary	Number of obs.	692	692	5482	5482
	Mean	3300.66	4713.89	3318.35	2905.37
	St. Dev.	1759.29	2210.02	1871.98	2304.78
	Min	255	63	50	1
	Max	6,169	8376	6517	8436
France	Number of obs.	7598	7598	13403	13403
	Mean	88.97	1.80	133.82	1.85
	St. Dev.	51.50	0.84	82.44	1.47
	Min	12.33	0.8	2	0.75
	Max	658.59	8.19	774.42	41
Slovenia	Number of obs.	726	726	174	174
	Mean	38.69	2.45	20.33	2.15
	St. Dev.	31.89	0.87	38.77	1.59
	Min	3.86	0.38	2.07	0.21
	Max	236.03	6.75	325.62	11.93

Note: 1 AWU is equivalent to 2,200 hours full time labour in France and Hungary, and 1,800 hours in Slovenia.

	2001 - 2007					2001 – 2001 –			2004 - 2007 (2006 - 2007) ^a				
	Heckmann Quantile			Heckmann Quantile				Heckmann Qua			ntile		
	land	lab	land	lab	land	lab	land	lab	land	lab	land	lab	
					H	ungary							
Size cons	0.55* 3.47*	0.25 [*] 5.82 [*]	0.51 [*] 4.00 [*]	0.74 [*] 2.07 [*]	0.35* 5.06*	0.49 [‡] 3.87*	0.74* 2.15 [‡]	0.64* 2.94 [*]	0.6* 3.04*	0.88 [*] 0.82 [*]	0.92 [*] 0.66	0.92 [*] 0.59 [◊]	
Mills λ	0.00	0.00	-	-	0.00	0.00	-	-	0.00	0.00	-	-	
Wald1	0.00	0.00	-	-	0.00	0.00	-	-	0.00	0.00	-	-	
Wald2	-	-	0.02	0.00	-	-	0.00	0.00	-	-	0.00	0.00	
Wald3	14.89*	194.4*	-	-	33.43*	172.6*	-	-	174.1^{*}	681.5*	-	-	
Pseudo R ²	-	-	0.08	0.31	-	-	0.16	0.31	-	-	0.49	0.54	
N surv	240	240	240	240	248	248	248	248	295	295	295	295	
N total	272	272	-	-	272	272	-	-	330	330	-	-	
					I	France							
Size cons	0.97 [*] 0.17 [*]	0.83 [*] 0.09 [*]	0.99 [*] 0.02 [◊]	1.00 [*] 0.00	0.98 [*] 0.11 [*]	0.85 [*] 010 [*]	0.99 [*] 0.01 [°]	1.00 [*] 0.00	0.99 [*] 0.01	0.97 [*] 0.01 [*]	1.00 [*] 0.00	1.00 [*] 0.00	
Mills λ	0.00	0.00	-	-	0.00	0.00	-	-	0.00	0.00	-	-	
Wald1	0.00	0.00	-	-	0.00	0.00	-	-	0.64	0.00	-	-	
Wald2	-	-	0.00	0.00	-	-	0.00	0.00	-	-	0.00	0.00	
Wald3	11081*	1620*	-	-	19618*	2446*	-	-	10144*	1998*	-	-	
Pseudo R ²	-	-	0.80	0.52	-	-	0.85	0.57	-	-	0.94	0.86	
N surv	975	975	975	975	1277	1277	1277	1277	1571	1571	1571	1571	
N total	2061	2061	-	-	2061	2061	-	-	1838	1838	-	-	

Table 2. Heckmann and quantile regression (q50) estimates for crop farms

Notes: land = UAA (ha), lab = labour (AWU), Mills λ = probability (significance of the inverse Mill's Ratio)

	2001 - 2007				(2001 - (2001 -	- 2003 2005) ^a		2004 - 2007 (2006 - 2007) ^a				
	Heck	mann	Qua	ntile	Heck	Heckmann		Quantile		Heckmann		Quantile	
	land	lab	land	lab	land	lab	land	lab	land	lab	land	lab	
					S	lovenia	D						
Size	-	-	-	-	-	-	-	-	1.07^{*}	0.81*	1.04*	0.97*	
cons	-	-	-	-	-	-	-	-	-0.16	-0.38	-0.11	0.02	
Mills λ	-	-	-	-	-	-	-	-	-0.02	0.79	-	-	
Wald1	-	-	-	-	-	-	-	-	0.03	0.37	-	-	
Wald2	-	-	-	-	-	-	-	-	-	-	0.56	0.88	
Wald3	-	-	-	-	-	-	-	-	1038*	15.89*	-	-	
Pseudo	-	-	-	-	-	-	-	-	-	-	0.84	0.51	
R ²													
N surv	-	-	-	-	-	-	-	-	27	27	27	27	
N total	-	-	-	-	-	-	-	-	48	48	-	-	

Table 2. Heckmann and quantile regression (q50) estimates for crop farms

Notes: land = UAA (ha), lab = labour (AWU), Mills λ = probability (significance of the inverse Mill's Ratio)

	2001 - 2007					2001 -			2004 - 2007				
					(2001 -	2005)"		$(2006 - 2007)^{a}$				
	Heck	mann	Qua	Quantile Heckr		mann Quai		ntile Hec		mann	Quantile		
	liv	lab	liv	lab	liv	lab	liv	lab	liv	lab	liv	lab	
					Hu	ngary							
Size	0.48*	0.53*	0.73*	0.76*	0.78*	0.69*	0.91*	0.66*	0.47*	0.7*	0.81*	0.92*	
cons	4.1*	4.04*	2.21	2.01	1.62 ⁰	2.6*	0.69	2.92*	4.22*	2.51*	1.57	0.60	
Mills λ	0.00	0.00	-	-	0.00	0.00	-	-	0.00	0.00	-	-	
Wald1	0.00	0.00	-	-	0.07	0.00	-	-	0.00	0.00	-	-	
Wald2	-	-	0.07	0.1	-	-	0.09	0.18	-	-	0.12	0.00	
Wald3	10.95*	32.15*	-	-	43.29*	68.43*	-	-	19.3*	68.7*	-	-	
Pseudo R ²	-	-	0.29	0.28	-	-	0.43	0.47	-	-	0.43	0.47	
N surv	26	26	26	26	41	41	41	41	42	42	42	42	
N total	108	108	-	-	108	108	-	-	84	84	-	-	
					Fi	rance							
Size	0.99*	0.83*	1.00^{*}	1.00*	0.98*	0.90*	0.99*	1.00*	1.00^{*}	0.95*	1.00*	1.00^{*}	
cons	0.01	0.08 [‡]	-0.01	0.00	0.05	0.04 [‡]	0.00	0.00	-0.02	0.01*	0.00	0.00	
Mills λ	0.00	0.00	-	-	0.00	0.00	-	-	0.00	0.00	-	-	
Wald1	0.81	0.00	-	-	0.26	0.00	-	-	0.17	0.00	-	-	
Wald2	-	-	0.83	0.00	-	-	0.55	0.00	-	-	0.03	0.00	
Wald3	2965*	731*	-	-	7240*	1308*	-	-	25471*	8955*	-	-	
Pseudo R ²	-	-	0.70	0.54	-	-	0.75	0.61	-	-	0.86	0.87	
N surv	417	417	417	417	601	601	601	601	761	761	761	761	
N total	1267	1267	-	-	1267	1267	-	-	973	973	-	-	

Table 3. Heckmann and quantile regression (q50) estimates for specialised dairy farms

Notes: liv = livestock units, lab = labour (AWU), Mills λ = probability (significance of the inverse Mill's Ratio)

		2001 -	2007			2001 – (2001 –		n	2004 - 2007 $(2006 - 2007)^{a}$				
	Heck	mann	Qua	Quantile		Heckmann		Quantile		Heckmann		Quantile	
	liv	lab	liv	lab	liv	lab	liv	lab	liv	lab	liv	lab	
					Sl	ovenia ^b							
Size	-	-	-	-	-	-	-	-	1.00*	0.63*	1.00*	0.92*	
cons	-	-	-	-	-	-	-	-	0.02	0.28*	0.00	0.05	
Mills λ	-	-	-	-	-	-	-	-	0.00	-0.37*	-	-	
Wald1	-	-	-	-	-	-	-	-	0.68	0.00	-	-	
Wald2	-	-	-	-	-	-	-	-	-	-	0.99	0.01	
Wald3	-	-	-	-	-	-	-	-	5338*	76.01 [*]	-	-	
Pseudo R ²	-	-	-	-	-	-	-	-	-	-	0.83	0.44	
N surv	-	-	-	-	-	-	-	-	180	180	180	180	
N total	-	-	-	-	-	-	-	-	217	217	-	-	

Table 3. Heckmann and quantile regression (q50) estimates for specialised dairy farms

Notes: liv = livestock units, lab = labour (AWU), Mills λ = probability (significance of the inverse Mill's Ratio)

		Labour									
Specification	LLC	IPS	ADF	PP	LLC	IPS	ADF	PP			
	Hungary										
intercept	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
intercept, trend	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
			Franc	ce							
intercept	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
intercept, trend	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00			

Table 4. Panel unit root tests for crop farms

Note: LLC = Levin, Lin and Chu test (probability, assumes common unit root process)

IPS= Im, Pesaran and Shin test (probability, individual unit root process)

ADF= ADF Fisher Chi square (probability, individual unit root process)

PP = PP Fisher Chi square (probability, individual unit root process)

Lag length 0 selected by Schwarz Bayesian Criterion

		Labour									
Specification	LLC	IPS	ADF	PP	LLC	IPS	ADF	PP			
Hungary											
intercept	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
intercept, trend	0.00	0.03	0.02	0.00	0.00	0.00	0.00	0.00			
			Franc	ce							
intercept	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
intercept, trend	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00			

Table 5. Panel unit root tests for dairy farms

Note: LLC = Levin, Lin and Chu test (probability, assumes common unit root process)

IPS= Im, Pesaran and Shin test (probability, individual unit root process)

ADF= ADF Fisher Chi square (probability, individual unit root process)

PP = PP Fisher Chi square (probability, individual unit root process)

Lag length 0 selected by Schwarz Bayesian Criterion

Conclusions

- Our results strongly reject the validity of the Gibrat's Law for crop farms in France (with one exception) and Hungary
- Smaller farms grow faster than larger ones
- Estimations confirm the validity of the Gibrat's Law for French and Slovenian dairy farms