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ABSTRACT  

Questions on farm structures (such as superiority of large farms) are typically linked to econo-

mies of scale. Economies of scale are normally a matter of investments in energy consuming 

technologies (large machinery). In contrast there is the issue of remaining prevalence of la-

bour intensive, small farms (meant to be inferior); but which are less energy intensive. We see 

a revival in theoretical and policy debates on pathways of agricultural development con-

cerning energy use. We analyse, how one can develop an approach that includes incentives to 

save energy and produce less GHG, and develop a framework of coexistence of farm types. 
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1 INTRODUCTION  
 

The discussion on green house gas (GHG) emission has reached the agricultural sector (Fish 

et al., 2008). With structural change in agriculture over the last decades labour intensity has 

been reduced and energy intensity has been increased (Pimentale, 1980). The use of fossil 

energy is nowadays a main source of power in agriculture. Instead of using renewable energy 

produced within the sector, famers heavily rely on fossil energy. There is even a discussion 

whether the production of ethanol is really energy efficient because it needs a lot of fossil 

energy under current technology conditions (Schmitz et al. 2007). By using fossil energy 

agriculture increased its labour productivity and assured the survival and income of those 

farmers who modernized and wanted to stay in business. In particular, the discussion on 

economic efficiency of large, energy intensive vs. small, labour intensive farms (Shankar et 

al, 2003) in transition countries has renewed the proposition that modernized farms are more 

competitive. In contrast small farms emitting less carbon and green house gases have become 

less competitive and farmers are compelled to migrate to other sectors as a result. But, by its 

structural change, the overall critic on agriculture as an emitting sector is increasing. A 

question is how can modelling of decision making on energy use and policy instruments help 

to mitigate the GHG emissions? 
 

There seem to be individual level and societal level problems with energy use in agriculture. 

The ecological-economics literature is questioning the advantage of large farms. Literature 

based on Georgescu-Roegen’s hypothesis (Martinez-Alier, 1997) of “peasant farming as 

being advantageous for sustainable farming” says: yes, there is an advantage for small farms; 

and in particular because of recycling and minimal use of fossil energy small, labour intensive 



 

farms should be prioritized as development path in an environment. This type of farming 

seems to seek to better minimize GHG emissions compared to large, energy intensive farms. 

Foremost since, emissions from agriculture, farm structures, and nutrient balances have 

become an issue, as well as measures are sought to reduce emissions (Lal, 2004). In contrast 

large farms fear to loose competitiveness if they are confronted with energy balances. We will 

contribute to the debate by relating emissions to the farm size and farmers’ objective as well 

as to seek a compromise. Furthermore we will make suggestion how to model farms more 

correctly with respect to behaviour and emission portraying and, in particular, we will do that 

by contrasting a “peasant” and a “modern farm” sector. For instance, objectives, technologies, 

structures and constraints may be different for peasants and modern farmers. 
 

However, we do not say that a sector is “better” per se in avoiding GHG emissions. The ar-

gument of the paper is towards co-existence of both sectors which is enabled by a policy 

which subsidies the “peasant sector” for mitigation and which taxes the modern sector for 

emission. In the paper we work with a dual farm sector in which a small, labour intensive 

farm sector and a large, energy intensive sector compete for land. The objective is to show 

how policy instruments such as taxes for energy use and technologies as well as subsidies for 

labour intensive farming activities and recycling can redirect the overall behaviour within a 

farming sector and between farms. The policy aim anticipated is that the policy instruments 

“tax” and “subsidy” shall reduce the use of fossil energy and hence reduce GHG emission. 
 

The paper is a conceptual paper and it will show a new pathway for concise modelling of a 

dual farm structure based on farm decision making tools. Tools are otherwise, fairly well 

known such as linear programming of economies of scale and quadratic programming. The 

plea is that sectors should be firstly separately modelled to get a structural view on GHG 

emissions composed of types of farm operation and then secondly combined. However, the 

author is fully aware, that in reality there is a spectrum of technologies and the use of fossil 

energy vs. recycling can be applicable in individual case on both sides of the line. For 

instance, a modernized farmer may claim that he is more energy efficient within his 

technologies than a peasant applying these technologies and also recycles; or he may say his 

tractors run with renewable energy (rape seed). But this is not the issue. Things may be 

exceptional. The issue is whether a single type of technology choices should dominate the 

structural appearance of a sector with respect to energy use. In principle it is hypothesized that 

small, less fossil energy using farms should have a chance. The paper works with the 

hypothesis that less (labour) productive farms have a disadvantage on the land markets and 



 

“normally” they would be squeezed to a niche operation, though their labour is needed 

because it substitutes energy. If no positive externality (less GHG emission) is awarded the 

small farm type might extinguish. The question is to what extent does it contribute to the 

overall GHG balance and should be promoted?      
 

The paper discusses policy tools to identify optimal sizes of farm operations along ecological 

concerns, which are more closely linked to the ecological impacts of farming in a first layer. 

To do so, we integrate ecology concerns as a reference to different technologies requiring dif-

ferent levels of labour in a second layer of policy analysis. In this framework, taxing and sub-

sidization will be outlined. Taxes will be differently assigned to technologies with an aim to 

reduce energy intensity, though we will show how to test the income effects. Subsidies will be 

paid for labour in recycling.  From another angle a moderate position is taken with respect to 

sustainable farming. Again the co-existence is given priority because it is argued that raised 

taxes can be used to subsidize less GHG emitting farms for which we need a common tax 

basis.      
 

However, this is not a pure discursive or politically oriented paper, which looks for arguments 

for small farms; rather a paper which suggests a concept of how to model the co-existence of 

small, labour intensive and large energy intensive farms. The immediate question is how to 

model the aspect of farm size and declining average costs in case of scale economies and to 

decipher appropriate technologies. For the sake of instrument and policy design we need a 

modelling concept of responses to instruments and their optimization which will be provided. 
 

Our approach draws on the concepts of linear programming of scale economies and recycling 

as well as positive quadratic programming with a reference to maximum entropy (Paris and 

Howitt, 200). In particular, we suggest combining these methods with the principal-agent-

theory (Richter and Furubotn, 1996). As a further issue, involved in the following discussion 

and motivation of the research, we have to think, moreover, on the pressure the agricultural 

sector may undergo in future: I.e. in the opinion of the author it is not sufficient to prove that 

ecologies of scale exist by modelling them, which may justify a certain level of “necessary” 

energy input in agriculture. Rather we take a normative approach and provide cost 

minimization. This approach, for which the conceptual outline will be given, is necessary to 

find a trigger that enables a reduction in fossil energy use. A reduction in energy use should 

be linked to substitution options in the current basket of technologies and enable energy sav-

ings at reasonable costs. From a normative point of view, this would mean that a certain com-



 

position of farm types (farm structure) could enable a cost minimal achievement of certain 

GHG emission targets.  In addition, it does not seem to be too realistic to reduce fossil energy 

use purely as constraining farming. To a large extend the survival of the sector and eventually 

food security is concerned. To depart from intensive agriculture at all is not conducive for all 

farmers. For instance, some European farmers have enjoyed high labour productivity and 

observed the advantage of highly mechanized agriculture; they may not go back. But 

counterparts could be find who take over and deploy more labour. So what are interactions?   

 

2 METHOD 
 

2.1 Reference and aims 
 

There is an intensive discourse on how to model farm supply and structural changes through 

programming models, to cope with different technologies through flexible functions, and to 

integrate different types of technologies in supply models through addressing heterogeneity of 

farms (Heckelei 2002). It is not the intention of this paper to repeat the discourse (or 

contribute to further advances, for instance, for scenario building, etc.: Theron et al, 2009); 

rather a different pathway is suggested which may enable us to adopt another string for policy 

analysis, for example, to specify policy instruments, such as those build on simple principal-

agent theory (Richter and Furubotn, 1997). Through fairly simple modelling of farmer 

responses we seek to accomplish feasible reactions to policy instruments. We want to 

integrate principal agent theory into policy analysis at a modest level of analytical 

sophistication. Moreover, the analysis shall be easily linkable to energy use. One important 

issue, tackled, is the co-existence of small-scale, labour intensive farming with large-scale, 

energy intensive farming. However, the aspect of the coexistence of small and large farms has 

to be tackled with respect to energy use and recycling of nutrients, increased labour intensity, 

etc.; and we look at modes to get medium sized technologies. Further note the paper is more a 

conceptual outline than a ready made model. In this regard the author does not want to 

endeavour in very sophisticate methods, rather we start with a simple presentation of 

economies of scale through programming . 
 

2.2 Programming 

As said the aim is to keep the approach in a mode that policy becomes easily retrievable from 

the structure of farms. A special mode of the linear programming method is adopted from 

Köhne (1965). For the integration of economies of scale modelling linear programming offers 



 

a tool to deal with economies of scale by using sequential programming. We first present this 

tool and then discuss it in conjunction with the problem of energy efficiency. However, to 

keep the subject operational the approach is based on well-known rules of linear program-

ming LP. Basically for energy use linking and technology adoption, programming means that 

most problems must be kept linear. In Figure 1, a case is outlined where we distinguish 

between cow rearing technologies which are discretely given as 0 to 20 cows, 21 to 40 cows 

and 41 to 60 cows. Note this is also the original example of Köhne (1965). It shows a case of 

milk production in which more than sixty cows were a large farm (today it maybe 200 cows, 

however, now 200 cows can be dealt with at the family level using heavy machinery). The 

least cost production system can not be ultimately chosen in terms of economies of scale. The 

clue is that, in order to get the least cost activity in a programming, other activities are to be 

chosen before. The highest gross margin is only achieved if activities with higher average 

costs (lower gross margins) are conducted “before” an achievement of lowest costs. The LP 

algorithm supports this. Reduced achievements in economies of scale are part of the program-

ming because other constraints have to be considered simultaneously. Hereby we approximate 

a typical scale problem by a rather simple tool and can depict the functions in discrete steps; 

whereas it depends on the skills of the investigator to linearize most appropriately.  
 

Figure 1: Tableau of Linear Programming 
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Source: Steinhäuser et al. 1996  
 

For energy use aspects the distinction of technologies as discrete steps has the advantage that 

we can identify technologies with their particular GHG emission and calculate the conse-



 

cutive distributions of these technologies to emission. This also means that emissions can be 

addressed by policy, for instance, taxes which can halt processes to further intensification in 

energy intensive technologies. Note the farm will not choose automatically the least cost 

activity in terms of economies of scale, i.e. technology with highest emission. Since the other 

constraints will determine the size of operation as been driven by the most binding constraint, 

labour and land availability are aspects that can modify decisions. As a consequence we can 

model small and large farms (for the moment as categories). These farms differently use 

external energy (see next). Additionally we can use observations from farm behaviour.  

 

For sure, farmers’ optimizing along the above tableau does not care about energy aspects. But 

embedded energy levels are retrievable though different with technologies. For the sake of 

empirical analysis it is important to contrast farms who have chosen strong investments in 

machinery and who did not. It is interesting to know that, from observation, types of farmers 

can be immediately distinguished. At the same time we need a generalization. A possibility is 

to take a model with a generalized technology and supplement it with observations. 
 

Another aspect which can be modelled is the analogy between economies of scale and 

ecologies of scale. The above modelling is a primal modelling. Energy use is either calculated 

from the outcome or it imposes a further constraint. In a dual analysis the energy use can be 

minimized given a certain income. Hereby new opportunities may emerge. The essentially 

aspect is that the programming provides an “observation” on technology choices. However, 

we proceed stepwise and explain furthermore that objectives and perceptions of farms differ 

as well as seek to generalize for the specific types of farms.  
 

2.3 Energy Constraints and Generalized Form for Large Farms 
 

Using the scheme of programming above, the aspect of energy use has to be re-integrated into 

programming itself. We start with modernized, energy intensive large farms. Then we enter 

into the sphere of energy needs and potential energy use as constraints. A question is how do 

we deal with energy as input? For instance, what are the substitution options in terms of alter-

native production activities and how do we deal with fixed amounts coming in with congealed 

energy from machinery. As been said the above, linear programming is discrete on 

technologies which enables us to have several activities (variables) associated with different 

emissions. To keep it simple, one can assume that external fossil energy use of agriculture is 

directly linked to CO2 emission, either directly at farm level or indirectly from energy/CO2 

coefficients involved in the production of equipments. For a first approach on policy 



 

implantation it could be stated that farmers might get a quota of emission rights, i.e. a quota of 

energy embodied in machinery, use of diesel, electricity, etc. and running the farm within that 

limit, i.e. if they want to produce along economies of scale the have to allocate the right. A 

second approach is a tax on energy. We explicitly put the tax on the change in technology and 

the taxing is on incremental GHG emission. Then the question expands along different types 

of machinery, farm equipment and measures that constitute modern energy intensive farming. 

Note, the energy use could be calculated in diesel equivalents. From the previous economies 

of scale analysis, suggested in the linear programming frame, we can resume internal cate-

gories or incremental steps of the choices on technologies. They prevail and constitute as con-

straints the technology matrix. We also include this as a constraint ct in system (1) Note, the 

constraints are internally used and apply differently between small-scale and large scale 

farms. We can then use them later as a distinction for small and large scale farm energy use 

intensity. 
 

Max { [p-u]´ q    - t´h}                                    (1) 
               Α11 q             <  cs 
               Α12 q             <  cl 
               Α13 q - Z11 h  <  ce    
                Z11 q - Z12 h  <  bt    
 

where      c1: standard constraints 
  ce: energy constraints to be met 
  cl: land constraint to be met 
  be: threshold values for economies of scale 
  q:  production activites 
  h:  variables controlling economies of economies of scale 

                t : tax 
                p-u: gross margin 
 

To be more explicit on the issue of taxing incremental steps, this formulation includes the 

potential for economies of scale as a variable “h”. In the classical model (Köhne, 1965) steps 

are without costs; they serve purely as additional variable from a programming point of view. 

However, taxes can be raised on emission increase through steps and they are later to be 

chosen based on response functions delineated. This implies that unit costs for farmers with 

different technologies can be directed by a government that seeks to charge different taxes in 

different technologies. For a farmer it means augmenting his production implies different tax 

levels because he emits GHG. The government has the option to escalate tax levels. 
 

Concerning the programming with switching technologies, as discussed so far, it is restricted 

to a typical farm”. However, as positive quadratic programming (Paris and Howitt, 200) has 

show we can generalize and receive flexible response functions which would mean also 



 

response functions to taxes at different levels. Two aspects are involved if a tax on 

technologies is imposed: (1) technology choices are redirecting the energy consumption and 

(2) competitiveness on the land market is changing. As will be shown soon the flexible 

version of the programming gives demand functions on constraints and this will enable us to 

use the programming as prototype for establishing smooth behavioural equations of large 

farms who seek to use economies of scale.   
 

The following outline briefly explains the method. Technically programming combines dual 

and primal solutions. Correspondingly we are able to specify the dual problem of minimizing 

the shadow prices. Minimizing shadow prices later refers to demand functions of inputs. For 

the moment the result of the optimization based on programming is given in the outline (2): 
 

Min   { ce´ λt  +   ce´ λl +    ce´ λe  + be´ λs }                                   (2) 
           Α11´ λt+  Α12´ λl  + Α13´ λe + A14´ λs  >  p –c 
               1´ λt+   1´   λl    +                  Z´ λs  >  - t                       
 

where      λ1,t,e,s: shadow prices 
 

Note that our farm model works with an imposed energy constraint so energy demand 

prevails and a shadow price are given. Also optimized farm activities and shadow prices for 

traditional constraints are internally derived. A next step is to translate the programming 

results into functions. For the moment and here we need only to sketch how the procedure 

works because it is established as Maximum entropy ME (Paris and Howitt, 2000). That 

suggested method use positive mathematical programming. As result one obtains a quadratic 

cost function (6)): 
 

P(q,h,λ)=[p-u]́ q-t´h-.5[q,h]’Q1[q,h]+[q,h]’Q2[λs,λe,λt,λf] +.5[λs,λt,λf,λe]´Q3[λs,λt,λf,λe]      (3) 
 

The interesting topic is now that this function contains the technology switches. Some 

remarks are necessary concerning observation on technologies and modelling with technology 

switches (constraints). (1) As been outlined by Howitt and Paris (2000), the flexible form of a 

quadratic modelling allows a delivering of marginal values. (2) A divergence between 

observations and internally calculated shadow prices or unit costs, respectively, is possible. 

(3) The limitations of linear programming with respect to discrete technologies and non-equal 

conditions can be overcome through ME through detection of generalized coefficients. 

Technically, in principle, the same can be applied to technology switches in economics of 

scale and some steps actually must not be fully met; rather for the empirical foundation we 

have to seek thresholds to include additional observations on technology choice (i.e. to 



 

distinguish those step met and those not met in economies of scale). Setting some balances to 

nil and looking for several farmers we can obtain a sector function. As a practical note: For 

observations on technology (for example on the size of tractors which are chosen according to 

the size of the farm but also with respect to expanding the size by additional renting in of land 

to meet the economies of scale of machinery, i.e. bigger tractors and combines), equality 

balances can be re-introduced (otherwise not). Note “h” is an artificial variable of technology 

switches which is, however, a measure for energy use. This enables a better representation of 

the energy demand equation that counts for the tax implementation. Taxes must not be 

uniform based one single energy equivalent; rather they can become progressive (stepwise) 

with technologies. Tax functions become smooth and stepping though they are still addressing 

technology choices of farmers. This is important because technology choices as be outlined 

are part of decisions for farm size and structure.   
 

2.4 Farm Economics for Small Farms  
 

In principle and at least in an analogous procedure, but now for a small-scale farms, 

programming could give us a similar outlay as in the large-scale case. Though note that there 

is a major difference in the design of the programming. Since we want to model the structural 

aspects of a having a dual farming sector of small and large farms and seek policies that help 

us to shift from energy intensive large farms to labour intensives small farms, the small-scale 

sector should be distinguishable from the large scale sector. The distinction is on recycling 

activities and labour devoted to it. Note the discussion is not on individuals and why a farmer 

is a large scale or small-scale type or that he has a choice to be big or little. We simply 

assume that the different farms exist. Also we want to avoid a discussion on motives.  

For the small scale sector we simply presume that farmers are recycling organics by knowing 

particular technologies, are devoting labour to recycling, and that no economies of scale 

prevail; rather labour intensive technologies are prevailing. Especially, recycling is a costly 

internal activity in terms of labour requirements, which delivers, for instance, soil nutrients 

from animal wastes, crop residues as organic fertilizer, etc.; i.e. we are especially looking at 

mixed farms. It also means that from an economic point of view, activities of recycling 

nutrients may look more expensive than their purchased counterparts if we take wage rates, 

but they may fit into the labour economy if we take family labour and shadow prices. I.e. we 

do not take the wage or labour productivity of large farms as reference, respectively. 

Recycling as a labour requesting activity can be introduced as an internal activity delivering 

nutrients (nitrogen) from harvesting organic matter and as substituting mineral fertilizer. This 



 

saves a lot of fossil energy. The saving comes with labouring for recycling. So recycling must 

be no mechanized activity. In modelling it is assumed that nutrients do not have financial 

costs, per se; no value appears in the objective function, but opportunity costs. As a costly 

activity, recycling negatively contributes to the farm objective by binding labour for sales 

activities; though expenses for mineral fertilizer are saved. Assuming labour surplus poor 

farmers may work hard because they can not afford mineral fertilizer and machines. In this re-

gard they are ecologically more effective. But, eventually, only if we assume that a go-

vernment can subsidize small farm activities of recycling pay. Note that recycling means less 

fossil energy use, for instance for nitrogen fertilizer, etc. A similar programming approach (4) 

on optimization of smallholders, comes now with recycling; it is a first steps to achieve  
 

Max { [p-u]´ q – [u-s]´r}                                     (4) 
               Α11 q  +  Α21 r <  c1 
               Α12 q +   Α21 r <  ct 
               Α13 q  -  Α23 r   < nr    
 

where      ct: standard constraints 
  cl: land constraint to be met 
  nr: nutrients constraint in recycling 
  u: unit costs in recycling 
  sl: subsidy 
  rs: recycling activity 

 

a corresponding generalized behavioural functions (5). For a re-formulation, as a flexible 

function which can accommodate policy instruments, we get, as indicated above in the same 

vein, positive quadratic programming (and ME). Programming is now for small scale techno-

logies; i.e. a functional representation of a profit function of a small-scale sector. This profit 

function (5) takes into account subsidies and gives values for the constraints as shadow prices.  
 

P(q,r,λ)=[p-c]́ q-[c-s]́ r-.5[q,r]’Q1[q,r]+[q,r]’Q2[λs,λn,λf]+.5[λs,λn,λf]´Q3[λs,λn,λf]                         (5) 
 

This profit function can be used to get a response function subject to the subsidy on recycling 

of nutrients and hence we can portray how to reach less purchase of artificial fertilizer. 

 

3 APPLICATION OF FARM MODELS FOR RESPONSE FUNCTIONS  
 

The working idea is now that demand functions for energy and carbon dioxide emission, as 

well as nutrient recycling and energy saving, respectively, can be derived. These functions 

shall depend on taxing/subsidies of technologies and we want to link it to farm technologies. 
 

3.1 Large Farm Responses 
 



 

Shadow prices give demand functions (6), for instance, delineated from profits of large farms. 

They are the first derivatives of the profit function (3). Further note that the linear 

“technology” assumption still matters, i.e.: Α11 q = c1 and Α12 q = ce are representing balances. 

Then, by the use of derivatives and the generalization of technologies (applied on represen-

tative farms which even can vary for agronomy criteria: Röhm and Dabbert, 2003)), we can 

offer analytical solutions for the optimization with taxes. Especially a relationship between 

shadow prices, energy constraints and activities, based on distinct technologies, can be 

retrieved. For instance, the relationship (6a) depicts the constraint (demand) for energy 

(carbon emission) as shadow price dependent. Various further constraints (for land 6b, etc.) 

are “explained” by the derivative of the ‘cost’ function:  
 

δP(q,h,λs,λe,λt,λf)/δλe=Q221q+Q321λs+Q322λe+Q323λt+Q324λf+Q212h=ce                                   (6a) 
 

δP(q,h,λs,λe,λt,λf)/δλl= Q211q+Q311λs+Q312λe+Q313λt+Q314λf+Q222h=cl                                   (6b) 
 

δP(q,h,λs,λe,λt,λf)/δλf= Q231q+Q331λs+Q332λe+Q333λt+Q334λf+Q232h=cf                                   (6c) 

… 

Moreover, the inversion of the matrices delivers a behavioural equation such as.  
 

λe = Q31 q + Q*32 c1+ Q*33 ce+ Q*34 ct + Q*34 ct + Q*35 be + Q*45 h                                        (7a) 
 

Firstly, from (7a) a shadow price for energy constraints can be calculated. Secondly it shows 

how this value depends on the choices q and h. I. e. the profit can be optimized to q and h and 

finally this will create a relationship between prices (or gross margins respectively) and 

quantities, including taxes and constraints on the technologies.    
 

λe = Q**31 [p-c] + Q**31 t + Q**32 c1+ Q**33 ce+ Q**34 ct+ Q*35 be                                      (7b) 
 

This is important for policy design. For the later policy analysis we have to show that the tax 

can be translated into prices of farm energy if this energy comes as an alternative; i.e. to 

purchase energy vs. internal sources of the farm sector. The same can be done for farm labour, 

land, etc. The interesting aspect is that the separate optimizations provide necessary condi-

tions to be met in a second layer of sector optimization of energy use change as shared 

between small and large farms (chapter 4). This second layer corresponds to incentive 

constraints like in principal agent approaches (Richter and Forubotn, 1996). Our first layer 

optimization characterizes the behaviour of farmers with respect to existing or imposed 

energy constraints and taxes. But it is also a response function to incentives. The availability 



 

of energy for individual farms may be not constraining; rather farmers presume that energy 

can be purchased from market. Alternatively the government can introduce environmental 

budget on GHG. We can take the energy price or the shadow price as calculations for the 

change in profitability. Importantly, since we want to model the competition of farm sectors, a 

similar opportunity to derive demand functions, exists to depict the land constraint as a land 

demand. We use the partial land equation from the set of the equations above and re-specify:     
 

Ql
21[p-ue]+Q341λs+Q342λe+Q343λt+Q344λf+Q232h=cl,d                                                              (6d) 

 

where λl is the land price (rent), p is food price and ue is the energy cost containing 

   

This function is a “bit” function on a land market which depends on technology “h”. It can be 

equated with the bit function for land of the smallholder sector (next chapter). The interaction 

will be discussed later.  
 

As another comment: So far the modelling has dealt with an open system with energy off- 

limits. This may be true, from a system perspective, that other limits in energy availability 

prevail. Notable if exogenous energy becomes scarce, we can take the system standpoint and 

ask what happens to economies of scale if energy is limited. The equations (6) represent how 

production and the “economic” of shadow prices are linked. The aim in the sector economics 

(farm sector) is to minimize shadow prices (maximize gains from production), so that 

production technologies impact on (increasing) shadow prices. Again we see the importance 

of technology choice. 
 

3.2. Small Farm Responses 

For the small scale sector, the concept is that paying subsidies shall encourage the use of or-

ganic matter, encourage energy saving (ev. carbon sequestration ), and to promote recycling 

of soil nutrients. (In principle the model, for example, could also portray animal traction if 

this would be a subsidize activity, but we look at labour). A self-procurement of inputs at a 

minimum of fossil energy saves energy, but requires labouring for recycling. For a system ori-

ented approach labour demand has to be specified explicitly and it is a derivative to its 

shadow price.  
 

For instance, taking the derivate of (5) to the shadow price of land, the constraint becomes a 

different meaning as variable of land demand:   
 

δP(q,r,λ/δλl = Q21[q,r] +Q31[λs,λn, λf] = cd
l                       (8a) 



 

 

In particular the land demand is of importance since it shows land use categories between 

small and large scale, and it enables a policy approach based on it (depicted next). The 

endogenous variables of food supply and recycling are obtained as derivatives (not shown) 

and as a solution of a simultaneous equation system we get, as before mentioned, a “demand” 

function for land, which is now driven by the subsidy and gross margins: 
 

For the modelling of response functions it is sufficient to know the coefficients in (8), for 

instance, from a similar Maximum Entropy (ME: Paris and Howitt, 2000) analysis as sugges-

ted above. Also in a similar way (8b) we can determine recycling response to subsidies as 

“supply” function. To get them we take the derivatives of recycling depending on shadow 

prices.  
 

δP(q,r,λ)/δr = [c-s] - Q1[q,r]+ Q2[λs,λn,λf] = 0                                          (8b) 
 

The illustrated structure now enables us to address policy issues and measures. 

 

4 RESPONSE FUNCTIONS FOR POLICY   
 

Following the above outline and thinking about policy influence on response functions, we 

can now use the response function of the large and small scale farm sectors to establish instru-

ments to address carbon balances and design policies to target emission. In its simplest case 

one can thing about a restriction on energy use and monetary compensation, if voluntarily 

participation in schemes is envisaged. The model enables such calculations. Alternatively we 

can assume a damage reduction function from GHG which has to be balanced (optimized) 

with payments to farmers. Let us think, at least, that premiums exist for saving green house 

gases (GHG) such as carbon facilities, payments by energy generation companies or 

government payments, etc. We follow this way. Then we have a price (or demand function) 

and can calculate the benefits for a government to interfere in farm optimization by taxing and 

subsidization. This will be outlined consecutively. However, a design of instruments, which 

addresses objectives in GHGs, has to be done along structural entities, found in addressing 

energy use. Structuring the issue we start with direct instruments and proceed with indirect. 
 

4.1 Direct policy instruments 
 

For the direct impact we hypothesize a link between “h”, which was the tax basis and a new 

variable on energy eu,r , which is to be established, exists. The measure in energy use or 



 

carbon equivalents (potentially including other GHG) is on the basis of additional energy 

imposed by an expansion of “h”: el = α hl. The introduction of the support variables “h” and 

its expansion increases the energy use. However, farmers will not automatically choose the 

least “h”, because they have to pay taxes (see above). Note a reference is no tax which gives 

the maximum of preferred steps in technologies (see above). By raising the tax, fossil energy 

should use declines. Since we want to have a change from an existing situation, a first step is 

to do the calculation of a reference with zero or almost zero tax on the intensive technologies.  
 

Note we further want to exhibit a sub-sector approach. It means we have a sum of farms, 

which differently applies economies of scale (the approach becomes a sector or regional 

approach). Though farms are classified in large and small farms, within the sub-sector farm 

sizes and economies of scale differ. As the variable “h” is a variable for farms, it means that 

sum of “h”s can stand for the sector. Then for policy there are two options, either (1) a direct 

taxing which means that farmers who use large scale equipments have to pay if they use a 

certain technology or (2) we foresee an indirect “t” taxing which means those who offer the 

technology (companies like Renault, Case, etc.) are paying and farmers are confronted with 

higher technology prices.    
 

Coming back to theory: a change in the energy use, as been identified by a change in 

technology, used, works along: el,r := Δel = α1 Δhl = αl[hl,n - hl,o]. Then we can insert for “hl,n” 

and the tax function, which we derived from the sector modelling, gives response. Parallel, for 

the design of an individually and directly imposed policy instruments for the small scale 

sector as suggested for the large scale subsector, suggestions for the small-scale sub-sector of 

policy instruments are subsidies on recycling, itself or labour in recycling, respectively. The 

question emerges how to treat the positive externalities of this sub-sector most directly. As an 

argument for subsidizing recycling shall be the energy saving which can be obtained as: es,r := 

Δer = αsΔrs = αs[rs - rs,o]. Subsidies will increase the competitiveness of labour in recycling. 

Note, if we define small scale farming without economies of scale, labour subsidies would be 

a most convenient way, especially when recycling is not a directly observable activity. 

Moreover and eventually because of political reasons this is a preferred instrument. A ques-

tion is, can it be only justified if we compare it with labour returns in capital/energy intensive 

farming? The effect of sub-sector policies adds up but we will see also joint (indirect) effects.  
 

4.2 Structural Policy (indirect) 
 



 

Here we hypothesize that the structural policy (i.e. indirect) effect of sub-sector policy 

instruments (tax for large scale and subsidy for small scale) could be even more important 

than direct ones. There should be a strong impact on the farm sub-sector composition, i.e. the 

land basis for less energy consuming farms (small-scale farms) is expanded to the expense of 

large, energy intensive farms. Increasing (maintaining, reducing migration) of the number of 

small farms, which per se is assumed to be less energy consuming, eventually, is a better 

policy than just a policy of directed energy consumption towards less energy consumption on 

existing farms. Note we refer for the standard argument that labour replaces energy and vice 

versa in sectors. But we will and aim also at structural changes on the land market. 
 

From a re-specification of production economics and decision making towards land demand 

we get from the response function analysis above: 
 

λe,l = Q-*32  A l1+ Q*32 cl, -l + Q*33 ce,l+ Q*34 ct,l                                                                     (8a) 
 

λe,s = Q-*32  A ls+ Q*32 c1, -s + Q*33 ce,s+ Q*34 ct,s                                                                    (8b)  
 

These inverse land demand functions can be equated for shadow prices and quantity (ct,+ct,l = 

ct: i.e. land is limited and we receive an equilibrium on the land market as dependent on taxes 

and subsidies). Seeing shadow prices of land as rents, the farm structure can be determined 

applying energy use criteria. Technologies, output prices and constraints determine the rent. 

We have to think about combining policy instruments to boost less energy intensive farms.    

 

5 APPLICATION FOR POLICY AND OBJECTIVES OF GOVERNMENT 

The response functions which have been designed for the two sub-sectors in agriculture 

(energy intensive highly mechanized farming and small-scale, recycling farming) are to be put 

into a policy perspective. For this we need an objective function. As a way to specify the 

objective and the constrained behavioural functions of the government we can use a concept 

which is similar to those of a principal and agents (Richter and Furutobn, 1996); whereby we 

consider the farm sectors as agents which are reflected by the behavioural functions. The 

instrument variables prevailing are the subsidy “s” and the tax “t” which are impacting on “h” 

and “l”. Furthermore, we have to clarify on the objective of the principal, the government. A 

simple version of a principal is that he wants to maximize the net effects of reduction of 

energy use (mirroring the GHG emission) minus a given amount of money available; or he 

minimize the money spend for energy use reduction assuming a given target of carbon 

emission. In our case, we prefer a depiction of an economic cost benefit analysis to find 



 

shadow prices. We assume that a target of reduction “et” is associated with a benefit of a 

society (a demand or willingness to pay exists). One can derive this benefit form a willingness 

to pay analysis which is based on alternative modes to save carbon. If a linear expression of 

the willingness to pay is obtained, the corresponding objective function (integral) is a 

quadratic function (9). The objective is supposed to be achieved by the several instruments.  

As said we work on a conceptual level. So far we achieved the production and recycling 

activities as to be associated with the emission. The overall target shall be a change in the 

savings in costs of carbon emission (measure in fossil energy use equivalents) given as an un-

weighted function of reduction (et = el,r + es,r + eu,r). We suggest a quadratic exposure which 

shall have a feature like in equation (9). In principle it means there is a marginal value of a 

demand function for reduction: alternatively on can work also with fixed prices:  
 

Er = ζ0 [el,r + es,r + eu,r] + 0.5[el,r + es,r + eu,r ]´ ζ1 [el,r + es,r + eu,r ] + t´h –s´r                           (9) 
 

where: el,r :  energy saved by land redistribution (increase land share of small farms: indirect) 
            es,r : energy saved by small farms through recycling based on subsidies (direct on farm)  
            eu,r : energy saved by large farms through taxing of economies of scale (direct on farm)  
 

Equation (9) can be modified in terms of a matrix represenation of the tax  
 

Er = ζ0 [el,r + es,r + eu,r] + 0.5[el,r + es,r + eu,r ]´ ζ1 [el,r + es,r + eu,r ] + [t,s]´I [h,r]                    (9’) 
 

where: I : unit matrix including -1 for the tax segment.  
 

The instruments (tax and subsidy) in equation (9) are free choice variables and not connected 

to a budget. Alternatively one can combine them to a budget constraint (see below in equation 

12). For the above response analysis (chapter 3 and 4) one can calculate linear relationships: 

qi= Ai ei ; and it becomes evident that the emissions are a function of the instrument variables. 

Then, plus the response functions as constraints, which are the agents behavioural functions 

and which are outlined activities of economies of scale and recycling as well as taxes and 

subsidies, equations (9a to 9c) are summarized presentations of emissions.  
 

Al,e el,r = bl,e +Bl,e [t,s]´ el,r = Al,e
 -1 [bl,e +Bl,e [t,s]´]                                                         (9a) 

 

As,e es,r = bs,e +Bs,e [t,s]´ es,r = As,e
 -1 [bs,e +Bs,e [t,s]´]                                                       (9b) 

 

Au,e eu,r = bu,e +Bu,e [t,s]´ eu,r = Au,e
 -1 [bu,e +Bu,e [t,s]´]                                                    (9c) 

  

And we have the technology choices (9d) which are dependent straight on instruments 
 

Ar[h,r]´= br,0+Br[t,s]´  [h,r ]´ = Ar
-1 [br,0 + Br [t,s]´]                                                        (9d) 



 

where: A, B and b are matrices that give behavioural equations 
 

This fourth constraint explains the relationship between the switch of technology activities on 

the one side (being taxed) and the recycling activities on the other side (being subsidized). 

Equation (9c) specifically recognizes the effects of land distribution between the two sectors.  
    

Inserting of constraints (9a to 9d) in (9) gives an objective functions for emission reduction 

which depends on subsidies and taxes as policy instruments “s” and “t”, only. Finally this ob-

jective can be maximized along t and s which are obtained as a result of modelling the sector: 
 

Er = ζ0´Ae
-1[be+Be[t,s]´]+.5[be+Be[t,s]´]´Ae

-1´ζ1Ae
-1[be+Be[t,s]´] 

 

       +[t,s] ´ I A r
-1 [br+Br[t,s]´]                                                                                                (10) 

 

As this system can be solved for the taxes “t” and subsidies “s”, taking the first derivative, a 

result is an optimal policy design (equation 11):  
 

δE(…)/δ[t,s]=ζ0Ae
-1´Be´+Ae

-1ζ1Ae
-1´[be+Be[t,s] + I Ar

-1´[br+Br[t,s]] = 0                               (11)                                                                                             
 
 

From equation (11) “t” and “s” can be calculated by matrix inversion.  
 

Alternatively we could impose a budget constraint, if the exercise shall be financially neutral.      
 

Er = ζ0´Ae
-1[be+Be[t,s]´]+.5[be+Be[t,s]´]´Ae

-1´ζ1Ae
-1[be+Be[t,s]´] 

 

       + λ[z-[t,s] ´ I A r
-1 [br+Br[t,s]´]]]                                                                                      (12) 

 

where: z: budget in case of financial neutrality z is equal to zero 

 
In this case two equation (as the derivatives to the vector of policy instruments t and s as well 

as λ) would give us the equation system (13):  
 

δE(…)/δ[t,s]=ζ0Ae
-1´Be´+Ae

-1ζ1Ae
-1´[be+Be[t,s] + I Ar

-1´[br+Br[t,s]] λ = 0                           (13a) 
 
δE(…)/δ λ = z-[t,s] ´ I A r

-1 [br+Br[t,s]´]]                                                                             (13b)                                                 
 
 

The problem in (13) is that a non-linear system appears and we need linear approximations to 

solve it for t,s, and λ. But it is possible. Note we only sketched how a solution can be found; it 

is possible to accommodate (13) by a numerical analysis. The difference to the first solution is 

that budget neutrality prevails which means that targets of emission are the focus and money 

becomes neutral. 

 

6 SUMMARY 
 



 

The paper presented a modelling approach on how economies of scale in large farms and 

recycling in small farms can be subject to policy instruments intended to reduce carbon 

emission form agriculture. Different types of approaches were outlined separately and it was 

indicated how land demand of each sub-sector can be used to couple the sector approaches. 

For the individual segment of large farms we introduced a tax on energy use based on 

technology switches. The tax is collected according to economies of scale as discrete switches 

in technologies, obtainable from a linear programming background. For small farms we 

suggested a subsidy on recycling. This implied that recycling becomes an implemented 

activity in farm modelling. The tax can be used to finance the subsidy. Since economies of 

scale are realized by technology jumps and these jumps describe shifts to energy intensive 

practices, a new behavioural concept had been applied which explicitly looked for switches 

which are associated with fossil energy use increases. In the modelling of policy we addressed 

direct and indirect effects of taxes and subsidies. With regard to direct effects the tax shall 

impact on technology choices and the subsidy shall promote recycling which was shown. As 

indirect effect, with regard to the competiveness, the tax and subsidy will change land 

occupation as structural variable. Finally it is indicated how tax and subsidy can be optimized 

using an objective function of carbon costs.  
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