Coordination and allocation on land markets under increasing scale economies and heterogeneous actors – an experimental study

Presentation at the 114th EAAE Seminar
‘Structural Change in Agriculture’, Berlin, Germany, April 15 - 16, 2010

Alfons Balmann*, Konrad Kellermann*, Karin Larsén*, Serena Sandri**
and Christian Schade**

*Leibniz Institute of Agricultural Development in Eastern and Central Europe, Germany (IAMO)
**Institute for Enterpreneurial Studies and Innovation Management, School of Business and Economics, Humboldt-Universität of Berlin, Germany
Introduction

• Economies of scale often not exploited in Western agriculture
 – dominance and persistence of small family farms (Balmann 1994, 1995)

• „Too little“ participation in collaborative arrangements that allow small firms to exploit economies of size

• Possible explanations for unexploited increasing returns
 – transaction costs limit
 – coordination failures among heterogeneous actors
Introduction

- This study focuses on the last explanation, i.e. coordination failures among heterogeneous actors
 - Balmann (1994, 1995)
 - establishing large arable farms in small farm agriculture can require price differentiation on land market
 - Aurbacher, Lippert, Dabbert (2007)
 - establishing machinery cooperations can require price differentiation
Objective

• Research question
 – Can price differentiation be achieved among heterogeneous actors?

• Approach
 – Laboratory experiments with students
 – An agent-based model with computationally intelligent agents using genetic algorithms provides a normative benchmark prediction
Outline

• Description of the land market example
• Experimental setting
• Benchmark prediction
• Experiment results
• Conclusions and further research
A land market example

Imagine the following situation

- A profit maximizing entrepreneur characterized by increasing returns wants to „take over“ a certain number of neighboring small farms
- The small farmers are assumed to
 - be equally large in terms of land
 - have land with identical physical properties
 - have heterogeneous reservation prices (opportunity costs) for their land
 - have private information on their reservation prices (but know the distribution of the others´ reservation prices.)
A land market example

- marginal economic rent, entrepreneur
- average economic rent, entrepreneur
- opportunity cost, farmers
- average opportunity cost, farmers
A land market example

Potential welfare gain = A – B

- marginal economic rent, entrepreneur
- average economic rent, entrepreneur
- opportunity cost, farmers
- average opportunity cost, farmers
Experimental setting

- Four scenarios (treatments):
 - two different levels of potential welfare gain: „tight“ and „generous“ room for negotiation.
 - two group sizes: „small“ (7 players) and „large“ (14 players)

<table>
<thead>
<tr>
<th>Potential welfare gain</th>
<th>Group size</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>“Tight” (A-B=352)</td>
<td>„Small“ (7 players)</td>
<td>“Large” (14 players)</td>
<td></td>
</tr>
<tr>
<td>Treatment 1</td>
<td>Treatment 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Generous” (A-B=704)</td>
<td>Treatment 2</td>
<td>Treatment 4</td>
<td></td>
</tr>
</tbody>
</table>

9
Experimental setting

Example of parameters (treatment 1: 7 players, tight room for negotiations)

<table>
<thead>
<tr>
<th>Player</th>
<th>Sum of land units</th>
<th>Opportunity cost of land unit*</th>
<th>Average opportunity cost</th>
<th>Total value of production*</th>
<th>Marginal value of production</th>
<th>Average value of production*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>80</td>
<td>80</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>160</td>
<td>120</td>
<td>52</td>
<td>40</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>240</td>
<td>160</td>
<td>232</td>
<td>180</td>
<td>77.3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>320</td>
<td>200</td>
<td>732</td>
<td>500</td>
<td>183</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>400</td>
<td>240</td>
<td>1382</td>
<td>650</td>
<td>276.4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>480</td>
<td>280</td>
<td>2022</td>
<td>640</td>
<td>337</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>560</td>
<td>320</td>
<td>2592</td>
<td>570</td>
<td>370.3</td>
</tr>
</tbody>
</table>

* Information presented to the players

** Total potential welfare gain

= Total value of production (at 7 players) - sum of players opportunity costs

= 2592 – 2240 = 352
Experimental setting

• 40 repetitions/rounds
• Entrepreneur is computerized and profit-maximising
• Opportunity costs randomly assigned to the participants in each round
• Each player has information about
 – His/her own opportunity costs
 – The distribution of the other players’ opportunity costs
 – The entrepreneur’s production function (and average production)
➢ Players are well informed!
Experimental setting

• In each round, every player makes a bid (an ask)
• After every round, each player receives feedback on
 – the number of transactions occurred
 – acceptance or decline of the player’s own ask
 – the own payoff in the round
• The players are not informed about the other players’ asks and payoffs
Experimental setting

- The subject pool consisted of 98 participants (28 in treatments 2, 3 and 4; 14 in treatment 1)
- Monetary incentives were given that are proportional to the players performance in the game
What should we expect?

- Benchmark case
 - game theoretic equilibrium for bidding behavior
 - agent-based simulation with genetic algorithm learning
- In the ABM, the entrepreneur and small farmers are modeled as agents
 - entrepreneur and small farmers interact repeatedly on market
 - small farmers “learn” optimal individual bids for given opportunity costs by applying individually a genetic algorithm (GA) (Dawid, 1999)
 - the model converges towards a game theoretic equilibrium
Benchmark case – simulations with agent-based model

Outcome of GA: treatment 1
Benchmark case – simulations with agent-based model

Outcome of GA: treatment 2
Benchmark case – simulations with agent-based model

The results from the genetic algorithms, i.e. the game theoretic equilibrium, suggest that:

• The farmers/players extract all welfare gain/rent
• The rent is distributed equally among the players with the exception that no player can receive a price higher than the „market price“
Experiment results

- Experiments were carried out in September and October 2009 with students

- Players not always playing rationally
 - Some exceptionally low asks
 - some asks lower than the opportunity cost of player (the share in each session varies between 0.4% and 8.9%)
 - behavioral explanation: analogy of winner’s curse (Thaler, 1988): people want to “win” the deal even if they lose money
 - Some exceptionally high asks
 - Asking for too much – no risk to loose
 - Possibly also typing errors
Experiment results

Distributions of number of accepted asks per round

Tight room for negotiation

Treatment 1

Treatment 2

Generous room for negotiation

Treatment 3

Treatment 4
Experiment results

Average share of accepted asks by treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 players, tight room (N=80)</td>
<td>7 players, generous room (N=160)</td>
<td>14 players, tight room (N=80)</td>
<td>14 players, generous room (N=80)</td>
</tr>
<tr>
<td>Average share accepted asks (standard deviation)</td>
<td>0.39 (0.44)</td>
<td>0.52 (0.44)</td>
<td>0.26 (0.41)</td>
<td>0.51 (0.44)</td>
</tr>
<tr>
<td>P-value, Mann-Whitney U-test*</td>
<td>0.054</td>
<td></td>
<td>0.0024</td>
<td></td>
</tr>
</tbody>
</table>

* Tests whether the data comes from two different populations (the null hypothesis is that the two samples are drawn from identical populations)
Experiment results

Average share of accepted asks by treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Average share accepted asks (standard deviation)</th>
<th>P-value, Mann-Whitney U-test*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 7 players, tight room (N=80)</td>
<td>0.39 (0.44)</td>
<td>0.74</td>
</tr>
<tr>
<td>3 14 players, tight room (N=80)</td>
<td>0.26 (0.41)</td>
<td></td>
</tr>
<tr>
<td>2 7 players, generous room (N=160)</td>
<td>0.52 (0.44)</td>
<td>0.96</td>
</tr>
<tr>
<td>4 14 players, generous room (N=80)</td>
<td>0.51 (0.44)</td>
<td></td>
</tr>
</tbody>
</table>

* Tests whether the data comes from two different populations (the null hypothesis is that the two samples are drawn from identical populations)
Experiment results

• Findings (I)
 – In general the share of accepted asks is surprisingly low
 • < 50 % in treatments with tight room for negotiation
 • ~ 50 % in treatments with high room for negotiation
 ➢ highly inefficient outcome
 – Smaller groups are (slightly) more successful (although not statistically significant)
 – Rate of acceptance does not increase over time
 • players do not learn to coordinate (even after 40 rounds)
Experiment results

Comparison with benchmark case – Treatment 2

- In average too high asks for low and very high opportunity costs
- Bidding more efficient as too high asks are more costly
Experiment results

Comparison with benchmark case – Treatment 4

- In average too high asks for lower and high opportunity costs (not just outliers)
Experiment results

Regression results, FE-model

<table>
<thead>
<tr>
<th></th>
<th>7 players</th>
<th>14 players</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tight room</td>
<td>Generous room</td>
</tr>
<tr>
<td>Constant</td>
<td>153000***</td>
<td>166000***</td>
</tr>
<tr>
<td></td>
<td>(22100)</td>
<td>(14800)</td>
</tr>
<tr>
<td>Opportunity cost</td>
<td>0.74***</td>
<td>0.83***</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.041)</td>
</tr>
</tbody>
</table>

Dependent variable: *Ask*
Experiment results

• Findings (II)
 – Individuals consider their opportunity costs
 • „Anchoring and adjustment“ (Tversky and Kahneman, 1974).
 – Problem: mark-ups too high among low and high opportunity cost players

 ➢ “Too high” mark-ups of low and high opportunity cost players could be related to some form of inequity aversion (Fehr and Schmidt, 1999), but with emphasis on different dimensions:
 • Low opportunity cost players: expect equal price
 • High opportunity cost players: expect to receive the same mark-up.
 • The dimensions - price and mark-up - are likely to be considered as „scarse“ or „prominent“ by the respective individual players.
Conclusions

• The experimental results suggest that
 – Players do not reveal information although this is costly
 – Players with low and high opportunity costs generally ask for „too much“
 – When potential gain is larger, the number of accepted asks is higher, i.e., when too high asks are more costly

• Experiments provide evidence for market failures and cooperation deficits as reasons for unexploited increasing returns
Further research

• Conduct the experiments with
 – individualized opportunity costs
 – with farmers instead of students
 – with other auction schemes (e.g. spectrum auctions)

• Identify which market mechanisms that are needed in order to support coordination so that reallocation to more efficient outcomes can be achieved.
Thank you for your attention!