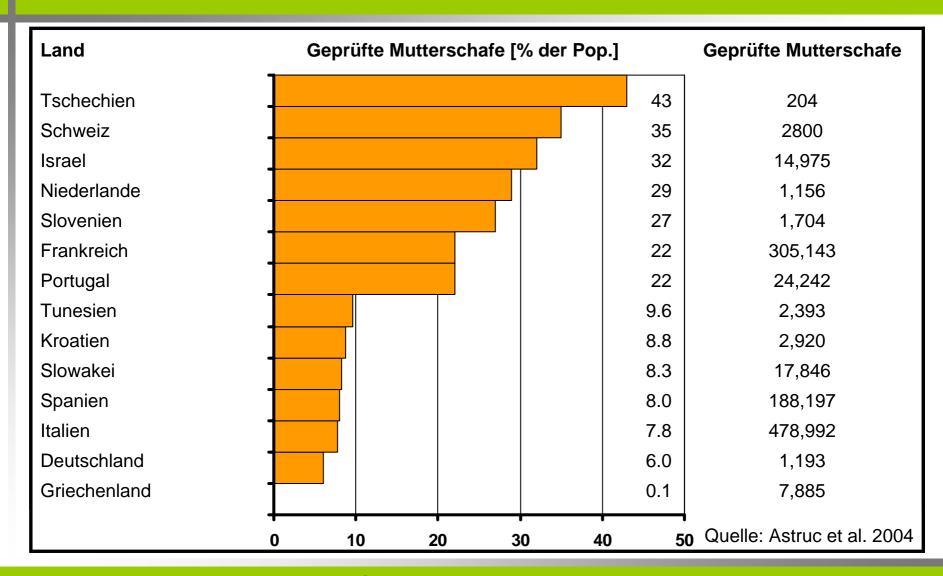


Zuchtfortschritt in der Milchleistung von Milchschafen

- Genetischer Fortschritt ist die effektivste Form der wirtschaftlichen Verbesserung
- Die Leistungsentwicklung ist abhängig von der Größe der aktiven Zuchtpopulation und der Stringenz der Zuchtdurchführung
- Bei vielen europäischen Milchschafrassen, darunter auch dem Deutschen Milchschaf, ist keine wesentliche Leistungssteigerung erkennbar
- Dieser Beitrag behandelt Möglichkeiten einer verbesserten Zuchtarbeit, besonders der Leistungsprüfung


Zuchtfortschritt in der Milchleistung von Milchschafen

(Milchleistung als adult äquivalente Leistung)

Land	Rasse	Periode	Genetischer Trend / Jahr		KB Einsatz in Nukleus - Herden
			Populations- durchschnitt %	In Liter	
Frankreich	Lacaune Manech (Rotkopf)	1986 - 1999 1986 - 1999	2,2 % 2,3 %	5,8 I 4,2 I	85 % 54 %
Italien	Sarda	1990 - 2002	1,2 %	2,0	12 %
Spanien	Latxa (Rotkopf) Latxa (Schwarz-kopf)	xxxx - 2003 xxxx - 2003		2,9 I 3,0 I	

Quelle: Astruc et al. 2002, A. Carta et al. 2004, A. Legarra et al. 2003 in Barillet et al. 36th ICAR Session,

Umfang der MLP bei Milchschafen

Umfang der MLP bei Milchschafen

Grenzen der Leistungsprüfung:

- Zuchtfortschritt selbst in guten Zuchtprogrammen erlaubt nur geringe Zuchtkosten
- Aktive Zuchtpopulationen oft relativ klein
- Geringe Nutzung der Künstlichen Besamung
- Rückgängiger Trend der Nutzung der MLP wenn nicht Teil eines straffen Zuchtprogramms
 - Hohe Kosten der MLP (marktorientierte Betriebe)
 - → managementrelevante Information
 - Milch ist nicht das Zuchtziel (Hobbyhalter)

Ansätze zur Förderung der Leistungsprüfung

Ziel

 Verbesserung der aktuellen Zuchtpraxis und gesteigerte Nutzungseffizienz der Leistungprüfung

Fragen:

- welche Selektionsmerkmale
- welche systematischen Einflußfaktoren
- zu welchem Zeitpunkt
- mit welcher Methode

Aufgabenbereiche

- Tieridentifikation
- LP
- Datenzusammenführung
- Zuchtwertschätzung
- Selektion
- KB (?)

Quelle: Zumbach und Peters 2002

Merkmale der Leistungsprüfung

 Wenige wirtschaftlich wichtige Merkmale mit denen die Gesamtleistung der Milchschafe zu verbessern ist:

Milchmenge, Milchinhaltsstoffe

Milchqualität/Eutergesundheit

Fruchtbarkeit

Funktionale Merkmale:

Exterieur, Gliedmassen

Euter- und Zitzenform

Welche Laktation sollte zur MLP herangezogen werden?

Erste Laktation:

Frankreich (Lacaune, Manech Rotkopf; Barillet et al. 2008)

Vorteil: frühe Zuchtinformation

Zweite Laktation:

in Deutschland gemäß der verordneten Regeln

- Vorteil: engere Beziehung zu späteren Laktationen
- Nachteil: späte Zuchtinformation

Genetische Parameter bei Lacaune und Menech Rotkopf Schafen (erste Laktation)

	Heritabilität	Genetische Beziehung mit Milchmenge
Milchmenge	0,32 und 0,33	
Fettgehalt	0,41 und 0,27	- 0,43 und - 0,39
Proteingehalt	0,51 und 0,51	- 0,48 und - 0,44
LSCS	0,15 und 0,15	0,15 und 0,21

Lacaune N = 121.283, erste Laktation

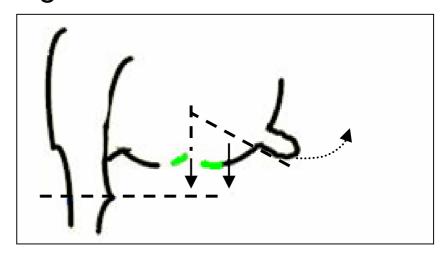
Menech N = 58.378, erste Laktation

Quelle: Barillet et al. 36th ICAR Session, Niagara Falls, USA, 2008

Erhebung funktionaler Merkmale (beim Lacaune Schaf der Nukleus - Herde)

- Somatische Zellzahl
- Eutermerkmale:
 - Zitzenwinkel
 - Euterband während erster Laktation
 - Eutertiefe

Euter: Lineare Beschreibung (F)



In Frankreich 3 bewertete Eutereigenschaften:

- Zitzenwinkel ZW
- Euterband EB
- Eutertiefe ET

Quelle: F. Barillet et al. 35th. ICAR Session, Kuopio, Finland, 2006

Erhebung funktionaler Merkmale (beim Milchschaf in D)

- Somatische Zellzahl
- Eutermerkmale:
 - Zitzenwinkel / -plazierung
 - Zitzenlänge
 - Euterband während erster Laktation
 - Eutertiefe / Bodenabstand
 - Hintereuteraufhängung

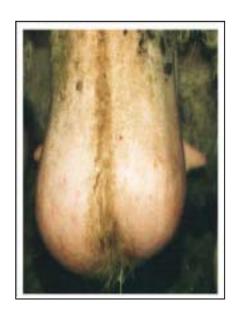
Zitzenplatzierung

1 Punkt

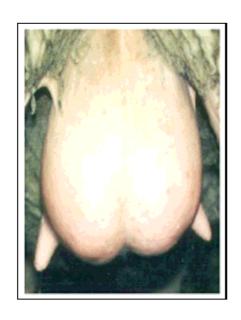
rechtwinklig zur Senkrechten

3 Punkte

ca. 45° zur Senkrechten


5 Punkte

tief am Euterboden

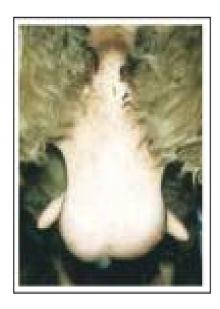

Zitzenlänge

1 Punkt

< 2,5 cm

3 Punkte

3,0 - 3,5 cm


5 Punkte

> 4.0 cm

Euterband

1 Punkt

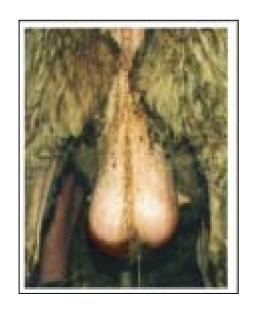
schwach, unterbrochen

3 Punkte

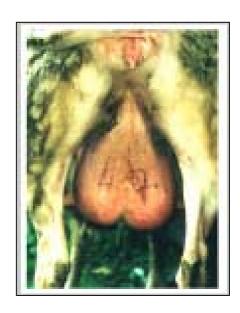
durchgängig, bis mittlere Euterhöhe

5 Punkte

fest, durchgägig, hochreichend


Bodenabstand

1 Punkt

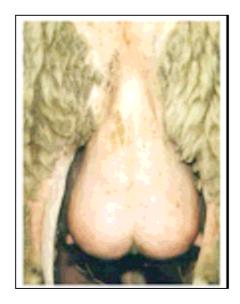

Euterboden unterhalb Sprunggelenk

3 Punkte

Euterboden in Höhe Sprunggelenk

5 Punkte

Euterboden drei Finger breit über Sprunggelenk

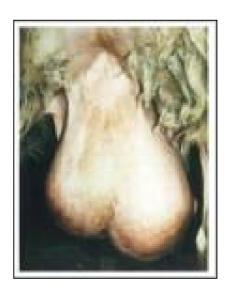

Eutertiefe

1 Punkt

< 14,5 cm

3 Punkte

17,5 - 20,5 cm


5 Punkte

> 23,5 cm

Hintereuteraufhängung

1 Punkt

lose

3 Punkte

tief, schmal,

5 Punkte

hoch reichend, breit, fest

Zeitpunkt der Erhebung von Merkmalen

Milchieistung Milchinhaltsstoffe	Ab erster Laktation mit bis zu 6 Testtagen			
Funktionale Merkmale	Bei Remontierung	Ab erster Laktation		
Zellzahl		X		
Zitzenwinkel, Eutertiefe, Euterband (Bockmütter)		X		
Exterieur, Lineare Beschreibung	X	X		
Fruchtbarkeit (Bockmütter!)	X	X		

Systematische Einflussfaktoren auf Leistungsmerkmale

Teilweise erfasst		
Herdengröße		
Melkverfahren		
Melkhäufigkeit		
Dauer der Säugungsperiode		
Haltungsintensität		
_		

→ Erfassung und Berücksichtigung sämtlicher wichtigen systematischen Effekte auf Leistungsmerkmale

Verfahren (erster Buchstabe)

A Antinono rest (Sesamenciae)	Α	Amtlicher Tes	t (Gesamtherde)
-------------------------------	---	---------------	-----------------

- B Besitzertest (Gesamtherde)
- C Amtlicher und / oder Besitzertest
- E Auch Teilherde bzw. eine Laktation / Schaf (zweite in D), auch säugende Schafe
- D Teillaktationsprüfung, gesamte Herde (Amtlicher oder Besitzertest) mind. 3 Testtage in der Mitte der Laktation

Mind. 5 Testtagesleistungen für ZWS der Muttern Für Bock – ZWS auch weniger Testtage pro Tocher erlaubt

Verfahrensvarianten

- T alternierend Abend / Morgen
- C 1 x pro Testtag, entweder abends oder morgens, korrigiert für Tagesgemelk der Herde

Verfahrensfrequenz

4

5

Intervall zwischen Testtagen in Wochen

6

Methode E (besonders in D) 150 Tagesleistung

- Für ausgewählte Tiere der Herde: einmalige Prüfung einer Laktation, in D zweite Laktation)
- Für Herden, in denen auch in der Säugephase die Milchleistung erfasst wird
- Anwendung ist flexibel
 - 1 oder 2 Melkzeiten pro Tag
 - 5 Testtage
 - Amtliche oder betriebliche Pr

 üfung m

 öglich

Bei MLP während der Säugezeit müssen Lämmer 12 Std. vorher abgesperrt werden

Quelle: ICAR Kapitel 2.2, 2006

Methode D (gemäß ICAR keine offizielle Prüfmethode)

Anwendungsgründe:

- Ermöglichung einer Rangierung innerhalb der Herde zur Entscheidung bezüglich Nachzucht bzw. Merzen
- Vorstufe eines Prüfsystems in Entwicklungsländern hinsichtlich Haltungsmanagement und Züchtung

Besonderheiten:

- 2 4 malige Milchkontrolle pro Herde und Jahr in der Mitte der Laktation
- Kontrolle von nur einem Gemelk empfohlen
 - → Frankreich: Einsatz der Methode D ist in etwa doppelt so häufig wie die Anwendung offizieller Verfahren

Quelle: ICAR Kapitel 2.2, 2006, Romberg 2007

Mögliche Modifikationen der Methode D:

- Kostengerechtes Instrument zur Managementkontrolle
- Einbeziehung in Zuchtwertschätzung (Testtagsmodell):
 - Erhöhung des Stichprobenumfangs
 - → zuverlässigere Ergebnisse

Weitere Entwicklung notwendig

- Auch für Teilherdenerfassung (Kombination mit Methode E)
- Neuordnung der ICAR Regeln

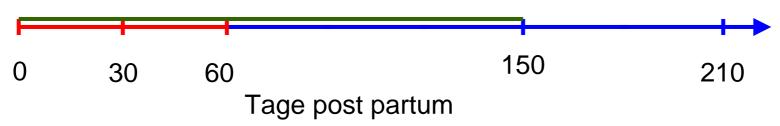

Berücksichtigung der Gesamtlaktation

Abbildung: Laktationsabschnitte beim Milchschaf

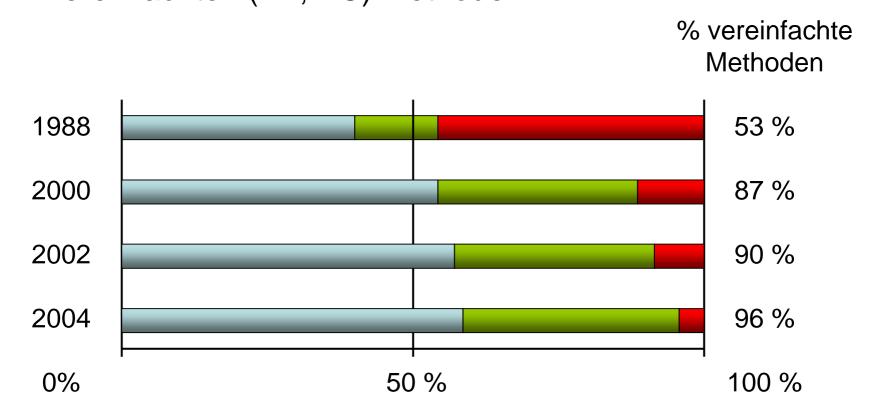
Säugeperiode

150-Tage-Leistung (Methode E)

150-Tage-Leistung (Methode A,B,C,D)

→ Erfassung der Gesamtlaktation zur Beurteilung des genetischen Leistungsvermögens

Quelle: Zumbach et al. 2002


Milchkontrollverfahren beim Schaf (Umfrageergebnisse der ICAR Arbeitsgruppe)

Land	Angewandte Methode						
	A4	A6	AT	AC	B4	B6	E4
Deutschland	X		Х		Х		X
England & Wales	X						
Frankreich				X			
Griechenland	X						
Israel				X	X		
Italien			X	X			
Kroatien	X		X		X		
Niederlande		X				X	
Portugal	X		X				
Schweiz	X						
Slowakei				X			
Slowenien			X				
Spanien			X	X			
Tschechien	X		X				
Tunesien	X						

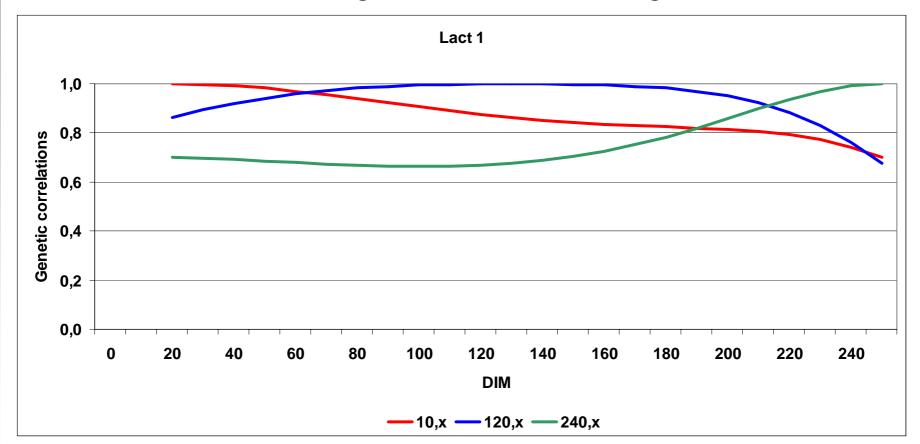
Quelle: Astruc et al. 2004


Vereinfachte Methoden

 Milchleistungsprüfung: Steigende Bedeutung der vereinfachten (AT, AC) Methoden

Quelle: Astruc et al. 2006

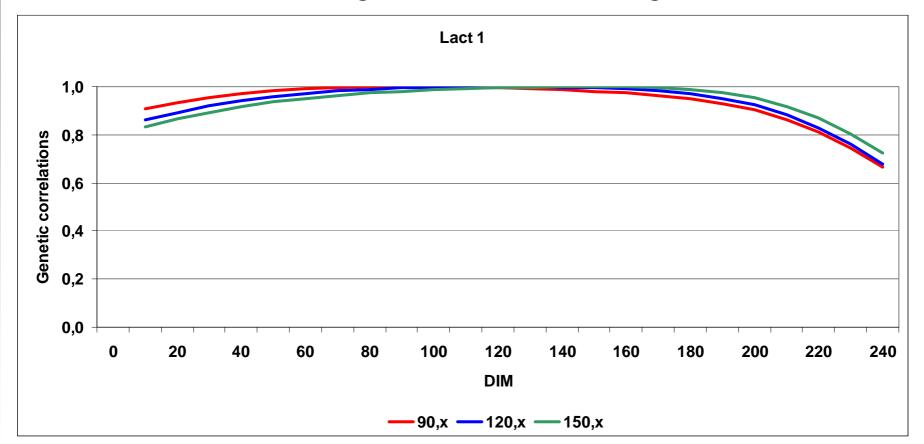
Vereinfachung durch Modifikation bestehender ICAR-Methoden



Bewertung vereinfachter MLP - Verfahren (Ziege)

Art der Kontrolle	Korrelation zu 14tg.LP (150 Tg)
AT 5 komplett	.99
Alternierend 1245	.97
Alternierend 24	.93
Alternierend 12	.91
Alternierend 13	.95
Alternierend 14	.96
Alternierend 15	.94
AC 5, korrigiert auf Tagesgemelk	.98
234 morgens korr.	.94
23 morgens korr	.93
347 morgens korr	.89

Bewertung vereinfachter MLP – Verfahren (Milchziegen)

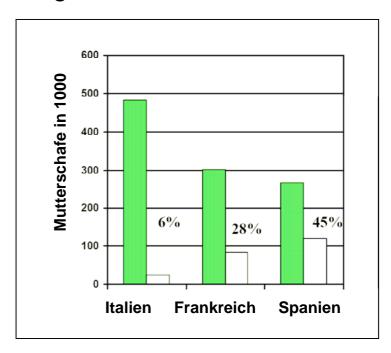

Genetische Beziehungen zwischen Testtagsinformationen

Quelle: Zumbach et al. 2008

Bewertung vereinfachter MLP – Verfahren (Milchziegen)

Genetische Beziehungen zwischen Testtagsinformationen

Quelle: Zumbach et al. 2008


Bewertung vereinfachter MLP – Verfahren (Milchschaf)

- Simplifizierte MLP-Verfahren (AT 6 8) bei Milchrindern (Indien) (Duclos et al., 2008) zeigen
 - abnehmende Genauigkeit der Laktationsleistungs-erfassung (0.97 bis 0.988),
 - Keine Reduzierung der Genauigkeit der ZWS von Bullen
- Schlußfolgerung:
 - Konkrete Analysen über Auswirkung von reduzierten Testtagen auf die Genauigkeit der Milchleistungserfassung und Zuchtwertwertschätzung beim Milchschaf erforderlich

Vereinfachung der Erfassung von Milchinhaltsstoffen

- Aufgrund hoher Kosten der Erfassung
- Teillaktationsprüfung für Inhaltsstoffe in F/I/E
 - Nur 21 % der MLP Schafe werden für Milchqualitätserfassung genutzt
 - Nur 3 von 6 Testtagen werden geprüft

 Italien, Frankreich und Spanien stellen 90 % der erfassten Milchschafe der ICAR Mitgliedsstaaten

Quelle: Astruc et al. 36th ICAR Session, Niagara Falls, USA, 2008

Teillaktationsprüfung für Milchinhaltsstoffe

Milchqualität: Teillaktionsprüfung innerhalb der AC Methode für Milchmenge

 Teillaktationsprüfung mit 2.8 Testtagen im Durchschnitt (Morgengemelk) für Michzusammensetzung und SCC in Manech (Rotkopf), erste Laktation

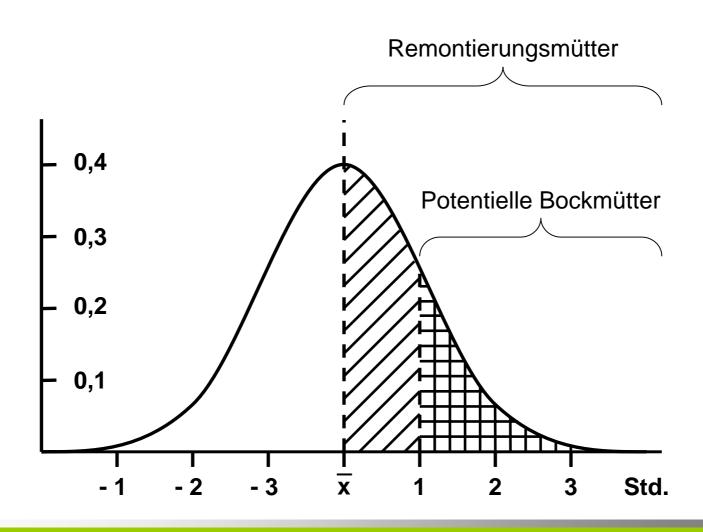
Quelle: Barillet et al. 36th ICAR Session, Niagara Falls, USA, 2008

Populationspararmeter bei vereinfachter somatischer Zellzahlerhebung

Genetische Einflussfaktoren	Laktationsdurch- schnitt LSCS (Melktage >=25)		onsdurchsc ür Melktage	
		25 - 144 Tage	55 - 144 Tage	85 - 144 Tage
Heritabilität	0.15	0.12	0.12	0.14
Genetische Korrelation mit Milchmenge	0.11	0.12	0.16	0.17
Genetische Korrelation mit Laktations - LSCS		0.99	0.98	0.96

Quelle: F. Barillet et al. 35th. ICAR Session, Kuopio, Finland, 2006

Teillaktationsprüfung für Milchinhaltsstoffe


- Schlußfolgerung:
 - Teillaktationsprüfung sowohl für Milchzusammensetzung als auch für SCC bei Milchschafen relevant (Lacaune, Manech)
 - Vergleichbare genetische Beziehungen für Milcheigenschaften und SCC
 - Derart vereinfachte Prüfungsverfahren (wenige Testtage je Mutterschaf) erfordern entsprechende Genauigkeit für jeden Testtag (ICAR Prüfkriterien für Schafmilch)

Quelle: Barillet et al. 36th ICAR Session, Niagara Falls, USA, 2008

Vereinfachte Verfahren der MLP

FAZIT:

- Reduzierte Erhebungsfrequenz möglich
- 4 bis 6 Wochen Intervall, alternierend (T) oder korrigiert auf Tagesgemelk (C)
- Dreimalige Messung (60 90 120 Laktationstag f
 ür Milchmenge, Inhaltsstoffe, Zellzahl)
 - Entweder als Methode D oder modifizierte Methode E / D zur MLP von Teilherden
 - Alle Erstlaktierenden und Spitzentiere / potentiellen Bockmütter
 - Kontrollierte Besitzerkontrolle
 - (Kontrollmodus innerhalb Zuchtverband festlegen)

Schlussfolgerung

- LP ist eine Voraussetzung für eine erfolgreiche Milchschafzucht, benötigt aber kostengünstige Durchführung
- Konzerntration auf wesentliche Leistungsmerkmale und funktionale Merkmale erforderlich
- Effiziente Lineare Beschreibung von funktionalen Merkmalen erforderlich
- ICAR Methoden AT + AC bringen schon Kosteneinsparungen
- Methode D aus züchterischer Sicht unterbewertet
- Weitere MLP Verfahren mit wenigen Testtagen müssen entwickelt und von ICAR anerkannt werden
- Erste Berechnungen weisen auf erhebliche Kosteneinsparungen ohne große Genauigkeitseinbußen hin

Schlussfolgerung

Vereinfachte und kostengünstige LP - Methoden sind Voraussetzung zur Vergrößerung der aktiven Zuchtarbeit

Leistungsprüfung für Milchschafe in Europa - Methoden und weitere Entwicklungen

Herzlichen Dank für die Aufmerksamkeit

Methoden der Milchleistungsprüfung beim Milchschaf (MLP)

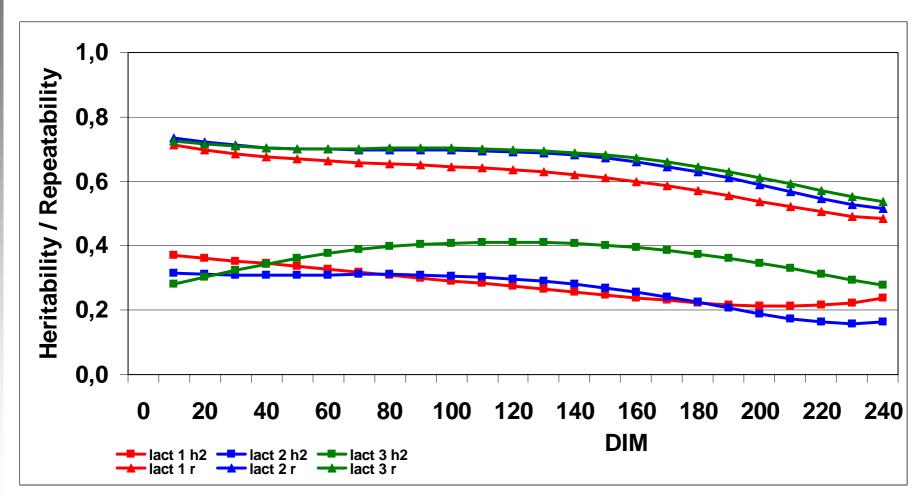
ICAR – Prüfmethoden	
Offizielle Prüfverfahren	
Standardverfahren	A (Gesamte Herde, amtlicher Prüfer)
	B (Gesamte Herde, Besitzerprüfung)
	C (Gesamte Herde, Amtliche und betriebliche Prüfung)
	E (Teilherde, nicht ständig melkende Betriebe)
Vereinfachte Verfahren	AT (ein Gemelk, alternierend)
	AC (ein Gemelk, nicht alternierend, korrigiert auf Tagesgemelk)
Nicht-offizielle Prüfverfahren	
	D (Teillaktationsprüfung, Gebrauchsherden)

Quelle: Zumbach et al. 2002

Genetische Parameter in der ersten Laktation (Manech Rotkopf Rasse)

	ME	FE	PE	FG	PG	LSCS
Milchertrag (ME)	0,33	+ 0,87	+ 0,92	- 0,39	- 0,44	+ 0,21
Fettertrag (FE)	+ 0,84	0,28	+ 0,91	+ 0,10	- 0,16	+ 0,25
Proteinertrag (PE)	+ 0,96	+ 0,82	0,30	+ 0,16	- 0,06	+ 0,25
Fettgehalt (FG)	- 0,17	+ 0,34	- 0,16	0,28	+ 0,60	+ 0,07
Proteingehalt (PG)	- 0,34	- 0,20	- 0,04	+ 0,16	0,51	+ 0,07
LSCS	- 0,26	- 0,16	- 0,17	+ 0,16	+ 0,38	0,10

Genetische Parameter: 58.378 erste Laktationen zwischen 2002 und 2007


Heritabilitäten diagonal

Genetische Korrelationen über Heritabilitäten

Umweltkorrelation darunter

Quelle: Barillet et al. 36th ICAR Session, Niagara Falls, USA, 2008

Genetische Parameter bei deutschen Milchziegen

Quelle: Zumbach et al. 2008

Methoden der Milchleistungsprüfung beim Milchschaf (MLP)

Nicht-offizielle Prüfverfahre	D (Teillaktationsprüfung, Gebrauchsherden)		
	AC (ein Gemelk, nicht alternierend, korrigiert auf Tagesgemelk)		
Vereinfachte Verfahren	AT (ein Gemelk, alternierend)		
	E (Teilherde, nicht ständig melkende Betriebe)		
	B (Gesamte Herde, Besitzerprüfung) C (Gesamte Herde, Amtliche und betriebliche Prüfung)		
Standardverfahren	A (Gesamte Herde, amtlicher Prüfer)		
Offizielle Prüfverfahren			
ICAR – Prüfmethoden			

Quelle: Zumbach et al. 2002