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Fish recruitment in a canal with intensive navigation:
implications for ecosystem management
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The young-of-the-year (YOY) fish community in Oder-Havel-Kanal, a navigable canal in the
German lowlands, assessed from May to October 1999, was dominated by tolerant species
especially roach Rutilus rutilus and perch Perca fluviatilis. Roach dominance was high in May
and June and low during the rest of the sampling period. The dominance pattern of perch was
inversely related to that of roach. Significantly higher densities of significantly smaller YOY
fishes were found in bays compared with the straight reaches of the main channel which was the
result of an aggregation of 0+ year roach in bays in May and June. Parallel to low structural
variability (spawning and nursery habitats), the intensive ship traffic may have been a major
force structuring the fish communities in the canals. Measured ship-induced flow velocity in
straight reaches was about four times higher than in bays of the canal. Maximum flow
velocities caused by barge tows were also four times higher than those induced by pleasure
boats. The study demonstrated the relatively low fish reproductive potential of a navigable,
artificially embanked lowland canal. To improve fish reproduction, modification of canal banks
is highly advisable to preserve existing bays and tributaries and even to create additional ones.

� 2002 The Fisheries Society of the British Isles. Published by Elsevier Science Ltd. All rights reserved.

Key words: young-of-the-year fishes; reproduction; waterway; flow velocity; anthropogenic
impact.
‡Author to whom correspondence should be addressed. Tel.: +49 (0)30 64181 653; fax: +49 (0)30
64181 750; email: arlinghaus@igb-berlin.de
INTRODUCTION

World-wide, there are 500 000–600 000 km of navigable inland waterways. The
continuously growing network of waterways already has half the length of the
rail network (Kubec & Podzimek, 1996), illustrating the global dimension of
waterways including canals. In Germany, there are c. 6900 km of navigable
inland waterways (77% regulated rivers and 23% canals) with a total area of
2320 km2 (WSV, 1995) corresponding to c. 30% of all German surface waters.
Waterways are important freshwater reservoirs and provide refuges for many
freshwater organisms (Wolter & Vilcinskas, 2000), allow intensive recreational
activities (e.g. angling, pleasure boating, canoeing, swimming and nature study;
Caffrey & Donnelly, 1998) and may serve in modern conservation strategies for
biotope connection (Jedicke, 1994). These functions are provided independently
of the primary objective of waterways to serve as navigation routes.

Fish ecological studies in extreme biotopes such as navigable canals and other
artificial ecosystems are scare but necessary. Firstly, they provide insights into
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the spatial dynamics of fishes including distribution of alien species (Balon et al.,
1986), the ecological amplitudes of ‘ intolerant ’, threatened fish species
(Arlinghaus & Wolter, 2002) and the potential of artificial ecosystems for fish
species conservation (Wolter, 2001). Secondly, such research may allow for
prognoses about the development of fish communities in heavily modified
‘ natural ’ rivers, as many flow-regulated rivers display a habitat similarity to
artificial canals. Thirdly, because growing numbers of people are angling in
canals, there is an increasing demand for information on fish populations and
reproduction rates in canals for inland fisheries management purposes to
properly evaluate stocking programmes (Cowx et al., 1990). Finally, the recently
passed European Water Framework Directive 2000/60/EEC (22.12.2000)
requires the member states to conserve at least a ‘ good ecological potential ’ in
all heavily modified water bodies. There have been some studies on adult fish
communities in canals (Pygott et al., 1990a; Wolter & Vilcinskas, 1997a, 2000).
There remains a lack of knowledge, however, of fish fry associations and fish
recruitment in canals, although young-of-the-year (YOY) fishes are important
indicators of habitat quality (Schiemer et al., 2001). Moreover, estimates of
abundance of larval and juvenile fish populations are essential for the practical
management of fish stocks.

The aims of this study were to investigate fish recruitment and spatio-temporal
distribution patterns of YOY fish associations in an artificial waterway, Oder-
Havel-Kanal. This intensively navigated canal is one of the most important
waterways in eastern Germany. In navigable canals, one dominant factor
structuring the fish community was suggested to be the high larvae mortality as
a result of shipping, especially the waves in the straightened, rip rap embanked
canal reaches (Wolter & Vilcinskas, 1997b). Thus, it was hypothesized that YOY
fish densities should be substantially higher in bays (convex banks) than in the
straight reaches of the canal where shipping influence should be substantially
higher (Zauner & Schiemer, 1992). Recognizing that shipping produces a harsh
environment in the littoral because of wave breakage and propagation of wakes
(Mazumder et al., 1996), the study included measurements and analysis of
velocity patterns that evolved in the straight reaches and U-turn bays as ships
passed along the canal.
MATERIALS AND METHODS
STUDY AREA AND SITE DESCRIPTION
The artificially constructed Oder-Havel-Kanal (OHK) is the central part of the 150 km

long Havel-Oder-waterway (HOW) crossing the watersheds between the Rivers Havel
and Oder in the north-eastern lowlands of Germany. The OHK was firstly opened in
1620 and has existed in its present form since 1914 (Uhlemann, 1994). For more than two
thirds of its length, the OHK is located above the surrounding land and therefore
constructed as a special waterproof structure with a clay spalant. As a result, the OHK
is ‘ unusually ’ straightened, 34 m wide, 3 m deep, with artificial embanked shorelines
(95% rip rap and 3·8% sheet pile wall), steep bank slopes (mean 33%) and a negligible
flow velocity (<0·05 m s�1) (Wolter & Vilcinskas, 1998a). Seven per cent of the shoreline
is formed by tributaries (four artificial ones) or by bays (convex banks). But, even in the
bays the predominant type of embankment is rip rap. The water quality of the OHK is
characterized as critically polluted (Landesumweltamt Brandenburg, 1994) and its
trophic state is polytrophic to hypertrophic (Wolter & Vilcinskas, 1997b). In contrast to
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other lowland canals, submerged macrophytes are common at the shoreline of the OHK
(Wolter & Vilcinskas, 1998a). They seldom, however, form dense stands. Overall, the
OHK offers only poorly structured habitats for fishes (Wolter & Vilcinskas, 2000).
Furthermore, the 53 km OHK-canal stretch sampled is bordered by the Lock Lehnitz in
the west (HOW-km 28·2, water level difference 6 m) and by the ship lift Niederfinow in
the east (HOW-km 77·9, water level difference 36 m). Neither lock is equipped with
fish-ladders which, inter alia, limits the migration of fishes from the Rivers Havel or Oder
into the OHK (Wolter & Vilcinskas, 1998b).

Two selected sites [HOW-km 70·5 (52�85� N; 13�83� E) and HOW-km 63·5 (52�85� N;
13�73� E)] were surveyed regularly between May and October 1999 within the main
channel of the OHK. These sites were considered as representative of the habitat
structures in the straightened course of the OHK, covering all available micro- and
meso-habitat structures within the main channel. Two main meso-habitats, straight
reaches and bays (convex or U-turn banks), were distinguished (Fig. 1).

The first site (transect 1, HOW-km 70·5) consisted of straight reaches and two small
bays. In the littoral from the water edge to a water depth of 1 m, submerged macrophytes
(Potamogeton sp., Ceratophyllum sp., Myriophyllum sp.) grew in the interstices of the
riprap embankment but did not form dense stands. The submerged macrophyte cover
was rarely >50% per unit area. Additionally, in the straight reach, a stretch of c. 50 m
was covered by emerged macrophytes (Phragmitis communis). The predominant substra-
tum was rip rap (95% of littoral area). Moreover, there was a small patch where the
substratum consisted of gravel and small stones. Bankside bushes and trees were
common and increased the shade in the littoral.

The second site (transect 2, HOW-km 63·5) was characterized by straight reaches and
a bay covered by submerged macrophytes (Potamogeton sp., Ceratophyllum sp.) from the
bank to a water depth of 2·5 m. A macrophyte cover of >50% per unit area was common
in the littoral of the bay. The straight reach was poorly structured and emergent or
submergent macrophytes were lacking. Rip rap was the dominant bottom substratum in
the littoral (90% of littoral area), with fine silt (mud) covering the canal bed in the bay.
Bankside bushes and trees were poorly developed.
ADV and pressure logger
at the canal straight reach

ADV and pressure logger
at the bay (convex bank)

80 m

40 m
Oder-Havel
-Kanal

Old milestone

HOW-km 634

Barge towMin. size
Max. size

F. 1. Accurate scale scheme of transect 2 in the main channel of the Oder-Havel-Kanal and locations
of measuring devices in the meso-habitats straight reach and bay. Rectangle indicates character-
istic sizes of barge tows.
FIELD SAMPLING
Between May and October 1999 the littoral YOY fish assemblage of the OHK was

studied. Random point abundance sampling (RPAS) by electrofishing was used (Copp &
Garner, 1995) using a DEKA 3000 portable electrofishing unit (pulsed DC, 600 V) with
a 17 cm diameter ring-anode. Stunned fishes were captured with a separate dip net of
600 �m mesh size. The unit sampling area of the sampling point covered c. 0·5 m2

(Bischoff & Wolter, 2001).
At each transect, a distance of 500–600 m was sampled by 100 random points during

daytime each month (Garner, 1997). At each point, a set of environmental variables was
recorded: water depth (cm), distance from bank (cm), substratum diameter (mud, sand,
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gravel and rip rap), macrophytes (none, emergent, floating and submerged), plant cover
(0%, 1–75% and >75% per point area), visibility (low, medium and high) and sun
exposure (low, medium, high and very high).

In July 1999, the pelagic YOY fish composition of the OHK was sampled between
HOW-km 65 and HOW-km 75. Seventy bongo (push) net samples (30 daytime, 40
night-time) were collected with a 0·6 m diameter, 500-�m-mesh net. This net, equipped
with a flowmeter (thus allowing for absolute abundance-estimation), was mounted in
front of a boat 4·5 m in length equipped with an engine of 15 PS. Duplicate tows were
pushed at 1 m depth with a speed of 1·66 m s�1 for 60 s.

Either the captured fishes were returned immediately to the water after identification,
counting and measuring total body length (LT, to the nearest mm below), or anaesthe-
tized with chlorobutanol (1.1.1-trichloro-2-methyl-2-propanol) and fixed in 5% formal-
dehyde buffered with sodium tetraborate decahydrate (Na2B4O7 10 H2O). In the
laboratory, fish larvae were identified (Koblickaya, 1981) and measured (LT).

Velocity measurements were performed in June 2001 at site two (between HOW-km
63·2 and HOW-km 63·5) to record the flow velocity patterns after ship passages inside
the two meso-habitats, straight reach and bay (Fig. 1). These instantaneous three-
component velocity measurements were taken simultaneously with two acoustic-Doppler
velocimeters (ADV, SonTek., San Diego, U.S.A.) to investigate the effect of navigation.
The ADV devices were mounted on a special platform that enables the probe to be fixed
without flow-induced vibration. Use of this instrument has the advantage that flow in the
sampling volume is undisturbed by the probe tip. Water levels were recorded by pressure
loggers (DL/N, STS Co., Sirnach, Switzerland) mounted into perforated steel pipes and
placed close to the ADV probes in the two meso-habitats (Fig. 1). The distance of each
instrument set from the water edge was c. 1 m and the distance between the two sets was
c. 200 m.
DATA ANALYSIS

Data were analysed for YOY fishes because older fishes were not representatively
sampled. Relative abundance (% of total catch) and frequency (% frequency of
occurrence of a species per sample) were calculated for all species. Categories of relative
abundance were classified in intervals on a scale of log2 (Matthews, 1998) to determine
the following six dominance classes according to Mühlenberg (1993): eudominant with
relative abundance >16% (24), dominant 8% (23)—<16%, subdominant 4% (22)—<8%,
recedent 2% (21)—<4%, subrecedent 1% (20)—<2%, and sporadic <1% of the total catch.

The Kolmogorov–Smirnov test was used to test the hypotheses of normality and the
Levene-test was used to test homoscedasticity of variances. Catch per unit of effort
(number of individuals per sample point, CPUE), species number per sample point (SPP),
fish total body length per sample point (LT PP) and abundance (individuals m�3)
comparisons were performed by one-way ANOVA followed by Dunnett-T3 multiple
comparison test, which is recommended in case of heteroscedasticity. ANOVA results
were verified by non parametric Kruskal–Wallis- and Mann–Whitney U-tests. Fish
fauna was compared between transects, meso-habitats, littoral and pelagic using the
qualitative Sørensen coefficient and the semi-quantitative Morisita index (Wolda, 1981).
Fish faunal breaks were indicated when indices were <0·5 (Matthews, 1986).

Spearman rank correlations were calculated to describe relations between habitat
structure and CPUE, SPP and LT PP because of significant non-normality and variance
heterogeneity for the selected and mostly ordinal environmental modalities. An index of
linear selection (Strauss, 1979) was used to assess habitat selection by comparing use
frequency by fishes with the frequency of available habitat categories. Logistic regres-
sions using a null sample by environmental variables matrix were performed to detect
active avoidance patterns of YOY fishes. Habitat structure of transects and meso-
habitats was compared using a point-by-environmental variables matrix and discriminant
analysis considering only eigen-values >1 and canonical correlations >0·5 relevant
(Lozán & Kausch, 1998). Calculations were performed with the SPSS software package
(SPSS, 1999). Statistical tests were evaluated at the 95% CL.
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The software package TFC Studio (Windows 9x, NT) was used as a data processing
tool for ADV measurements. Prior to the data processing, each record was visually
inspected to identify possible problems such as spikes or abrupt discontinuities in the
velocity time series. Spikes were removed and replaced with values generated by linear
interpolation between adjacent data (Sukhodolov et al., 1998).
RESULTS
OVERVIEW OF YOY FISH COMMUNITY
In the transects 1 and 2, 1082 juvenile fishes including 740 YOY fishes of 9

species were collected from 1136 sampling points. The composition of the YOY
fish catch (Table I) revealed the dominance of two species: roach Rutilus rutilus
(L.) and perch Perca fluviatilis L. Both species were eudominant (together
relative abundance >85%). Chub Leuciscus cephalus (L.) and ruffe
Gymnocephalus cernuus (L.) were subdominant and bleak Alburnus alburnus (L.)
was subrecedent. More than 40% of all YOY fish species were found sporadi-
cally. Overall, perch dominated the fish fry association, because it had not only
a high relative abundance but also a high frequency, which was considerably
higher than the frequency of roach.

With respect to ecoethological guilds (Table I), the fish fry assemblage of the
OHK was dominated by tolerant species (eurytopic and phyto-lithophilic, with
relative abundance >93%). Intolerant species such as rheophils, limnophils,
phytophils or lithophils were very rare. More than 50% of the YOY species
inventory found was listed in German Red Lists for threatened fish species.
SPATIO-TEMPORAL YOY FISH OCCURRENCE AND DISTRIBUTION

Roach and bleak were recorded for the first time in May, ruffe and perch in
June, chub and sunbleak Leucaspius delineatus (Heckel) in July, ide Leuciscus
idus (L.) and tench Tinca tinca (L.) in August and dace Leuciscus leuciscus (L.) in
September (Fig. 2). Roach dominance and CPUE was high in May and June
(309 YOY roach) and low in July, August, September and October (34 YOY
roach). The pattern of relative abundance of perch was inversely related to that
of roach. Ruffe and chub showed a rather homogenous dominance structure
from July to September. Except for perch and chub, species abundance declined
in October compared to the rest of the sampling period. In July, none of the
YOY fish species caught in the pelagic [208 bleak, one gudgeon Gobio gobio (L.)
and one zander Sander lucioperca (L.)] were found in the littoral. Consequently,
Sørensen and Morisita indices indicated faunal breaks between the pelagic and
littoral YOY fish assemblage in July. Mean absolute abundance (individuals
m�3 �..) of YOY fish was significantly higher (ANOVA, Dunnet-T3,
P<0·001) in the littoral during daytime (1·45�0·23) compared with the pelagic
during both daytime (0·0017�0·0012) and night-time (0·225�0·003).

Because of the varying, and patchy fish distribution in May (high ..), mean
CPUE (�..) of YOY fishes was highest in August (1·23�0·14; ANOVA,
Dunnet-T3, P<0·001 except for comparison with May, P>0·05). As expected,
mean LT PP increased significantly (ANOVA, Dunnet-T3, P<0·001) from May
until August and was not significantly different in September and October.



T






I.
L

is
t

of
re

co
rd

ed
Y

O
Y

fis
h

sp
ec

ie
s

an
d

th
ei

r
re

la
ti

ve
ab

un
da

nc
e

an
d

fr
eq

ue
nc

y
in

th
e

O
de

r-
H

av
el

-K
an

al
19

99
,e

co
et

ho
lo

gi
ca

lg
ui

ld
s,

do
m

in
an

ce
of

ad
ul

t
fis

h
co

m
m

un
it

y
an

d
vu

ln
er

ab
ili

ty

Sp
ec

ie
s

Sc
ie

nt
ifi

c
na

m
e1

(f
am

ily
,

ab
br

ev
ia

ti
on

)

E
co

et
ho

lo
gi

ca
l

gu
ild

s

C
om

m
on

na
m

e
St

re
am

ve
lo

ci
ty

2
Sp

aw
ni

ng
su

bs
tr

at
um

3

D
om

in
an

ce
cl

as
s

(a
du

lt
co

m
m

un
it

y)
4

V
ul

ne
ra

bi
lit

y5
A

bu
nd

an
ce

(%
)

F
re

qu
en

cy
(%

)

A
lb

ur
nu

s
al

bu
rn

us
(C

yp
ri

ni
da

e,
A

a)
B

le
ak

E
ur

yt
op

P
hy

to
-l

it
ho

ph
il

Su
bd

om
in

an
t

ab
.

2·
57

1·
06

G
ob

io
go

bi
o

(C
yp

ri
ni

da
e,

G
g)

G
ud

ge
on

R
he

op
hi

l
B

P
sa

m
m

op
hi

l
Sp

or
ad

ic
R

L
—

—
L

eu
ca

sp
iu

s
de

lin
ea

tu
s

(C
yp

ri
ni

da
e,

L
d)

Su
nb

le
ak

L
im

no
ph

il
P

hy
to

ph
il

+
R

L
0·

68
0·

26
L

eu
ci

sc
us

ce
ph

al
us

(C
yp

ri
ni

da
e,

L
c)

C
hu

b
R

he
op

hi
l

B
L

it
ho

ph
il

Su
br

ec
ed

en
t

R
L

5·
68

2·
99

L
eu

ci
sc

us
id

us
(C

yp
ri

ni
da

e,
L

i)
Id

e
R

he
op

hi
l

A
P

hy
to

-l
it

ho
ph

il
Sp

or
ad

ic
R

L
0·

14
0·

09
L

eu
ci

sc
us

le
uc

is
cu

s
(C

yp
ri

ni
da

e,
L

l)
D

ac
e

R
he

op
hi

l
A

P
hy

to
-l

it
ho

ph
il

+
R

L
0·

27
0·

18
R

ut
ilu

s
ru

ti
lu

s
(C

yp
ri

ni
da

e,
R

r)
R

oa
ch

E
ur

yt
op

P
hy

to
-l

it
ho

ph
il

E
ud

om
in

an
t

ab
.

46
·2

2
4·

67
T

in
ca

ti
nc

a
(C

yp
ri

ni
da

e,
T

t)
T

en
ch

L
im

no
ph

il
P

hy
to

ph
il

Sp
or

ad
ic

R
L

0·
14

0·
09

G
ym

no
ce

ph
al

us
ce

rn
uu

s
(P

er
ci

da
e,

G
c)

R
uff

e
E

ur
yt

op
P

hy
to

-l
it

ho
ph

il
Su

br
ec

ed
en

t
ab

.
4·

59
2·

90
P

er
ca

flu
vi

at
ili

s
(P

er
ci

da
e,

P
f)

P
er

ch
E

ur
yt

op
P

hy
to

-l
it

ho
ph

il
E

ud
om

in
an

t
ab

.
39

·7
3

17
·8

7
S

an
de

r
lu

ci
op

er
ca

(P
er

ci
da

e,
Sl

)
Z

an
de

r
E

ur
yt

op
P

hy
to

ph
il

Sp
or

ad
ic

ab
.

—
—

+
,

no
t

ca
ug

ht
as

ad
ul

t;
—

,
no

t
ca

ug
ht

in
th

e
lit

to
ra

l
bu

t
in

th
e

pe
la

gi
c

of
th

e
m

ai
n

ch
an

ne
l

of
O

de
r-

H
av

el
-K

an
al

;
R

L
,

R
ed

L
is

t;
ab

.,
ab

un
da

nt
;

1
K

ot
te

la
t

(1
99

7)
;

2
Sc

hi
em

er
&

W
ai

db
ac

he
r

(1
99

2)
;3

B
al

on
(1

97
5,

19
81

);
4
W

ol
te

r
&

V
ilc

in
sk

as
(2

00
0)

;5
A

cc
or

di
ng

to
R

ed
L

is
ts

of
B

ra
nd

en
bu

rg
(B

rä
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COMPARISON OF THE MESO-HABITATS ‘ BAY ’ AND ‘ STRAIGHT REACH ’
For Sørensen and Morisita indices, CPUE, SPP and LT PP, there were no

significant differences between transects 1 and 2. The data were pooled for
further analysis of differences between the meso-habitats, bay and straight reach,
within the main channel of the OHK.

Species composition was similar between the two meso-habitats, e.g. Sørensen
and Morista-indices were >0·5. Relative abundance of roach, however, was
considerably higher in bays than the straight reaches. Conversely, perch had a
higher dominance in the straight reaches as compared to bays. In general by
neglecting seasonal effects, YOY fish density (CPUE) was significantly (U-test)
higher in bays than in straight reaches, with the individuals caught in bays being
significantly smaller than in the straight reaches (Table II). The length differ-
ences were attributable to the dominance of small roach larvae and juveniles in
the bays in May and June when hardly any YOY fishes were caught in the
straight reaches (Figs 2 and 3). Apparently, in May and June nearly all YOY
fishes were aggregated in bays. Their LT were <20 (May) to 45 mm (Fig. 4).
From July until October no statistical differences were detected between bays
and straight reaches for mean LT PP of the total catch (Fig. 4) and of perch and
roach.
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F. 2. Relative abundance of YOY fishes caught between May and Ocober 1999 in the main channel of
the Oder-Havel-Kanal. See Table I for abbreviation of fish names. Numbers at top of bars are
sample sizes. , Pf; , Rr; , Lc; , Gc; , Aa; , Ld; , Ll; , Li; , Tt.
HABITAT CHOICE
Fish abundance (CPUE) and species diversity (SPP) was correlated positively

with plant cover and inversely with substratum diameter (Table III). This
pattern was also apparent for CPUE using the Strauss index of linear selection.
Smaller YOY fishes were associated with plants, near the shoreline, exposed to
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sun and at reduced substratum coarseness (Table III). Logistic regression of the
null samples did not reveal any obvious pattern of habitat avoidance by YOY
fishes.

Differences in habitat choice were determined comparing bay and straight
reach (Table III). Whereas in the bay, YOY fish distribution was dependent on
plant cover, in the straight reach Spearman rank correlations were significant for
water depth and distance from bank, which in the bay did not have a detectable
effect on habitat choice of fishes.
T II. Mean�.. catch (CPUE), species number (SPP) and
total body length per sample point (LTPP) of YOY fishes caught
during the sampling period May–October 1999 in the meso-
habitats bay and straight reach in the main channel of the

Oder-Havel-Kanal

Bay Straight reach

CPUE 1·14�0·24*** 0·31�0·03
SPP 1·22�0·03 1·23�0·04
LTPP 55·89�1·71** 64·41�0·93

**P<0·01; ***P<0·001.
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F. 3. Relative abundance of YOY fishes caught between May and October 1999 in the meso-habitats
bay (�) and straight reach (�) in the main channel of the Oder-Havel-Kanal. Numbers at top of
bars are sample sizes.
STRUCTURAL DIFFERENCES BETWEEN TRANSECTS AND
MESO-HABITATS

Negligible differences in habitat characteristics were found between transects
and meso-habitats. Eigen values of the discriminant functions were <1 and thus
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were not of relevance. There was a high degree of structural homogeneity within
the transects 1 and 2 and meso-habitats bay and straight reach of the main
channel of the OHK.
FLOW VELOCITY FOOTPRINTS WITHIN MESO-HABITATS DUE TO
NAVIGATION

In the absence of navigation, the flow velocity in the OHK is <0·05 m s�1.
The passage of a typical barge tow in the OHK (length, 80–110 m; width, 7–9 m;
tonnage, 680–1000 GRT; speed, 1·9–2·3 m s�1) resulted in an increase of the
flow velocity in the straight reach up to 80 cm s�1. Inside the bay, the same
barge tow induced a flow velocity four times smaller [Fig. 5(a)]. The maximum
water level depression during barge passages was c. 20 cm and differed only
slightly between locations [Fig. 5(b)]. Barge tows affected the flow velocity
patterns in a similar way, whereas the passage of smaller pleasure boats (length,
<13 m; width, <4 m; speed, <3 m s�1) induced a maximum flow velocity of
20 cm s�1 (Fig. 6).
DISCUSSION
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GENERAL FISH RECRUITMENT PATTERN
Fish recruitment in 1999 was representative of the adult fish assemblage in the

OHK (Wolter & Vilcinskas, 1997a, 2000) and showed within the structural
constraints of an extreme biotop a typical pattern of chronology of appearance,
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T III. Spearman rank correlation coefficients between catch (CPUE), species number
(SPP) and total body length per sample point (LTPP) and various environmental
modalities in the main channel and in the meso-habitats bay and straight reach of the

Oder-Havel-Kanal in 1999

Water
depth

Distance
from
bank

Plant
cover

Substratum
diameter

Sun
exposure Visibility

Main channel
CPUE   0·21** �0·16**  
SPP   0·12* �0·17**  
LTPP  0·22** �0·13* 0·17** �0·29* 

Bay
CPUE   0·31** �0·17*  
SPP   0·18* �0·17*  
LTPP   �0·17*  �0·45** 

Straight reach
CPUE �0·17* �0·22*   �0·22** 
SPP �0·24** �0·26**  �0·18* �0·24** 
LTPP 0·28** 0·50**  0·17*  

, not significant (P>0·05); *P<0·05; **P<0·01.
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F. 5. Flow velocity (a) and water surface elevation (b) produced by a barge tow in the meso-habitats
bay and straight reach in the main channel of the Oder-Havel-Kanal (see Fig. 1) in June 2001.
density and growth (Fig. 2; Floyd et al., 1984; Schlosser & Angermeier, 1990;
Scheidegger & Bain, 1995; Garner, 1996). The relative abundances of the most
dominant adult fishes were well matched by the dominance structure of the YOY
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fish community (Table I). Two species, sunbleak and dace, were recorded for the
first time whereas six sporadic adult fishes, asp Aspius aspius (L.), burbot Lota
lota (L.), rudd Scardinus erythrophthalmus (L.), three-spined stickleback
Gasterosteus aculeatus L., spined loach Cobitis sp., white bream Abramis
bjoerkna (L.), were not detected as YOY fish, which confirms low recruitment of
these species. The aim of the study was to sample habitats representative of the
straightened canal course. In contrast, Wolter & Vilcinskas (1998b) sampled
several specific micro-habitats (e.g. mouth of tributaries) with higher habitat
variability, which were not considered in this investigation. Therefore, it was not
expected that the whole species assemblage would be sampled as YOY fishes. In
the present study, the recruitment of several species of the adult fish assemblage
in the OHK was underestimated. This stems from the fact that some species such
as bream Abramis brama (L.) are known to spawn in tributaries of the OHK and
colonize the main channel as older fish (Arlinghaus, 2000) and other species such
as bleak prefer the pelagic early in ontogenesis (Copp, 1992). Both habitats were
not sampled regularly and pelagic fish are generally under-represented in
electrofishing surveys (Reynolds, 1996).
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F. 6. Velocity patterns of three barge tows (a) and two pleasure boats (b) measured in the straight reach
(see Fig. 1) in the main channel of the Oder-Havel-Kanal in June 2001.
IS THERE AN INFLUENCE OF SHIPPING ON YOY FISH DISTRIBUTION?
Complex interactions of biotic, abiotic and spatial factors determine the

structure of fish communities (Jackson et al., 2001). Recently, there is a growing
body of evidence for rivers (Gaudin, 2001) and waterways (Wolter & Vilcinskas,
1997b), that abiotic factors such as physical disturbances are of higher signifi-
cance in controlling fish diversity, population dynamics and production than
biological interactions such as predation and competition (Schiemer et al., 2001).
River regulation, channelization, rip rap embankment and reduction of shoreline
structures (Copp, 1990a; Jurajda, 1995; Scheidegger & Bain, 1995; Wolter &
Vilcinskas, 1997a; Schmetterling et al., 2001) enhance the negative effects of
physical disturbances such as flood pulses in regulated rivers (Pearsons et al.,
1992; Schiemer et al., 2001) or ship-induced waves in waterways (Wolter &
Vilcinskas, 1997b). This is most pronounced in straightened and monotonously
embanked canal courses and urban watersystems (Wolter & Vilcinskas, 2000;
Wolter, 2001). Exposed to flow, YOY fishes are known to prefer conditions of
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low flow at the shoreline (Floyd et al., 1984). This particularly applies in the first
days after hatching, because swimming ability and resistance to current velocities
are not only species specific (Garner, 1999) but also length specific (Mann &
Bass, 1997). Therefore, with increasing fish length, YOY fishes are able to resist
higher water velocities which enables habitat shifts and habitat partitioning
between species (Gaudin, 2001). In the OHK, the main physical disturbances are
increasing water currents during ship passages (Figs 5 and 6). In May and June,
nearly all YOY fish sampled from the littoral were found in bays (Fig. 3), where
flow velocity during ship passages was substantially lower than in the straight
reaches (Figs 1 and 5). Although adult fishes including roach were observed to
spawn in straight reaches, roach larvae were not caught there in May (Fig. 3).
Generally, significantly higher YOY fish densities (CPUE) and significantly
smaller fishes were found in bays (Table II), which confirmed the main
hypothesis of this study. With increasing LT, YOY fishes were apparently able
to colonize the straight reaches with less risk of being washed out by ship waves
(Fig. 4). Therefore, median LT of YOY fishes were not significantly different in
samples taken in bays and straight reaches from July to October. It remains
uncertain, however, whether the distributional patterns of the YOY fish assem-
blage, especially in May and June, is attributable to a preference of YOY fishes
for bays, passive drift of fish larvae or high mortality in the straight reaches
precluding YOY fishes being sampled.

Although the observed YOY fish distribution in the OHK cannot be directly
linked to the shipping-induced flow velocity by structuring the YOY fish
community, there are at least four indications that support this hypothesis: (1)
roach larvae are strictly bound to low flow patches near the shoreline (Copp,
1990b; Garner, 1996; Mann, 1996) and displacement velocity for larvae of
7·5 mm was reported to be 6·9 cm s�1 (Lightfoot & Jones, 1996). In the OHK
even among (loose) vegetation, however, current velocities reached up to 20 cm
s�1 in bays and 80 cm s�1 in straight reaches (Figs 5 and 6). Therefore, in the
OHK apart from high predation pressure because of a lack of refuges in
vegetated micro-habitats and shallow water areas (Bischoff & Wolter, 2001), a
high mortality as a result of shipping was conceivable, most likely in the straight
reaches (Wolter & Vilcinskas, 1997b). This may explain the substantial decline
of roach abundance after the high densities observed in May and June (Fig. 2)
and the lack of YOY fishes in straight reaches in these months (Fig. 3). These
findings agree well with those of Duncan et al. (2001), that YOY fishes avoided
sites with a flow velocity >20 cm s�1 in the River Thames. Generally, depending
on the substratum roughness, older (and larger) YOY fishes are able to resist
higher water velocities up to 60 cm s�1 (Mann, 1996). This may have allowed
YOY fishes to colonize the straight reaches from June onwards (Fig. 4). Overall
significantly smaller fishes were found in bays (Table II), which further substan-
tiates the hypothesis that the higher shipping induced flow velocities in straight
reaches inhibit colonization by smaller YOY fishes with a restricted swimming
ability; (2) although the known biotic interactions would favour roach over
perch in hypertrophic ecosystems (Persson et al., 1991), perch dominate in canals
(Wolter & Vilcinskas, 1997b). In the aquatic ecosystems of German lowlands,
perch typically spawn in March or early in April (Wolter et al., 1999). Many
authors report, apparently genetically fixed, ontogenetic habitat shifts with perch
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larvae moving out into the pelagic area and after some time returning to the
shallow-water areas of the littoral (Urho, 1996). Migration back to the littoral
seems to take place gradually when the fish have reached a length of 8 to 40 mm
(Urho, 1996). Although perch were certainly present in the OHK in May, YOY
perch were recorded for the first time in June (Fig. 2). At that time, the whole
population of YOY perch was offshore and could not be caught in the littoral.
In July, the movement back into the littoral was probably completed because no
perch were sampled in the pelagic. Offshore perch larvae may be less influenced
by ship waves than roach larvae in the littoral which are strictly bound to the
shoreline. This pattern might favour perch over roach under anthropogenic
influences in canals, which has led to the proposition of ‘ perch as an indicator
species for structural degradation in regulated rivers and canals ’ (Wolter &
Vilcinskas, 1997b); (3) nearly all ecospecies (e.g. YOY roach, bream, chub and
gudgeon), except juvenile bleak and perch and zander larvae, prefer shallow
water <1 m deep, within 6 m of the bank with some plant cover (Garner, 1996).
Thus, it was expected that the sparse macrophyte stands in the OHK would be
densely populated by YOY fishes to increase growth and reduce predation risk
(Garner, 1996). Although within the main channel a positive aggregation of
smaller YOY fishes and plant cover was detected, no correlations were observed
for the straight reach alone (Table III). It is suggested that strong water currents
combined with a slightly lower abundance of macrophytes in the straight reaches
inhibit YOY fishes from colonizing vegetation in the these areas. In bays, water
currents after ship passages seemed to be not too high to inhibit colonization of
plants by YOY fishes (Table III). Contrasting correlations in bays and straight
reaches may be interpreted as a result of the differences in water currents (Fig. 5),
because habitat structure was similar between the meso-habitats within the main
channel of the OHK; (4) Linfield (1985) suggested an avoidance behaviour of
fishes in relation to navigation. In the OHK, in tributaries which are rarely
subject to ship traffic, significantly higher YOY fish densities were detected
(Arlinghaus, 2000). This indicated that even tolerant (e.g. eurytopic) fish species
found better reproduction zones and nursery areas in tributaries where (a) the
effect of navigation was practically absent, and (b) habitat variability was greater
(Arlinghaus, 2000).

The present study did not verify a mechanical impact of ship-induced waves
and associated shear stress on larval fishes directly (Morgan et al., 1976;
Holland, 1986). In addition to the potential impact of navigation on YOY fishes
discussed, however, several negative effects of intensive navigation on YOY
fishes may occur in the OHK including disturbance of habitat, resuspension of
canal bed substratum and hence increase of turbidity, dislodgement and damage
of eggs and larvae, flow velocity-induced higher energy cost for feeding as well as
reduction of aquatic vegetation and food resources such as invertebrates
(Hofbauer, 1965; Morgan et al., 1976; Holland, 1986; Murphy et al., 1995; Jude
et al., 1998). This may result in a shift in the fish community composition with
increasing boat traffic and a reduction in total fish biomass (Linfield, 1985;
Pygott et al., 1990b). Further studies are necessary to allow for an objective
evaluation of a negative impact of ship waves on YOY fishes.

This study demonstrated the relatively low fish reproductive potential of
navigable, artificially embanked lowland canals. To improve fish reproduction,
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modification of canal banks is highly advisable to preserve existing bays and
tributaries and even to create additional ones.

We are grateful to A. Türck, H. Zwadlo, H. Bungartz and W. Sauer for their assistance
in the field and U. Thiel from the German Anglers Association Brandenburg for fishing
permission. We thank two anonymous reviewers for providing valuable comments on an
earlier version of this manuscript.
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