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Abstract

Size-selective harvesting is assumed to alter life histories of exploited fish popula-

tions, thereby negatively affecting population productivity, recovery, and yield.

However, demonstrating that fisheries-induced phenotypic changes in the wild

are at least partly genetically determined has proved notoriously difficult. More-

over, the population-level consequences of fisheries-induced evolution are still

being controversially discussed. Using an experimental approach, we found that

five generations of size-selective harvesting altered the life histories and behavior,

but not the metabolic rate, of wild-origin zebrafish (Danio rerio). Fish adapted to

high positively size selective fishing pressure invested more in reproduction,

reached a smaller adult body size, and were less explorative and bold. Phenotypic

changes seemed subtle but were accompanied by genetic changes in functional

loci. Thus, our results provided unambiguous evidence for rapid, harvest-induced

phenotypic and evolutionary change when harvesting is intensive and size selec-

tive. According to a life-history model, the observed life-history changes elevated

population growth rate in harvested conditions, but slowed population recovery

under a simulated moratorium. Hence, the evolutionary legacy of size-selective

harvesting includes populations that are productive under exploited conditions,

but selectively disadvantaged to cope with natural selection pressures that often

favor large body size.

Introduction

Human harvest of wild populations is often intense and

nonrandom with respect to phenotypes (e.g. Darimont

et al. 2009). In most situations, individuals carrying certain

fitness-related traits (e.g. large body size or explorative and

bold behavior) are more vulnerable to harvest than others

(Allendorf et al. 2008; Al�os et al. 2012; Sutter et al. 2012).

A well-studied example of human harvest is fishing, which

often targets the largest and oldest individuals and is thus

positively size selective (Lewin et al. 2006; Jørgensen et al.

2007; Kuparinen and Meril€a 2007; Law 2007). Life-history

theory suggests that elevated adult mortality favors individ-

uals that allocate energy to reproduction early in life
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through early maturation at small size and/or increased

reproductive investment at the expense of postmaturation

somatic growth (Stearns 1992). Such phenotypic changes

could be magnified when harvesting is not only intensive

but also positively size selective (Laugen et al. 2014). While

early maturation increases the probability that an individ-

ual will reproduce before it is harvested, small body size at

reproduction may confer fitness costs through a decrease in

egg number (fecundity), reduced egg and offspring quality

(Walsh et al. 2006; Arlinghaus et al. 2010; Uusi-Heikkil€a

et al. 2010), and increased natural mortality (Jørgensen

and Fiksen 2010; Audzijonyte et al. 2013a; Heino et al.

2013; Jørgensen and Holt 2013). However, depending on a

species’ ecology and local harvesting patterns, evolution of

late, rather than early, maturation (Poos et al. 2011) and

fast, rather than slow, growth rate (Walters and Martell

2004; Matsumura et al. 2011; Enberg et al. 2012) can also

occur in response to harvesting. Furthermore, if adult mor-

tality is very high and there is thus little fitness to gain by

allocating energy to future reproduction, fish might invest

heavily in the first reproduction and produce high, rather

than low (Walsh et al. 2006), quality eggs and offspring. In

fact, despite one might intuitively expect a certain of

change in response to size-selective harvesting (e.g. evolu-

tion of slower growth rate, Walters and Martell 2004), exact

predictions of life-history changes in response to fisheries

exploitation are challenging and require stock- and fishery-

specific analyses (Arlinghaus et al. 2009; Laugen et al.

2014). Evolutionary changes of body size and related life-

history traits can have important repercussions for species

and community ecology (Peters 1983; de Roos and Persson

2002; Haugen et al. 2007), management reference points

(Heino et al. 2013), and population productivity, recovery

speed, and fisheries yield (Law and Grey 1989; Hutchings

and Fraser 2008; Conover et al. 2009; Laugen et al. 2014)

and thus may be of high relevance to contemporary fisher-

ies management (Conover and Munch 2002; Jørgensen

et al. 2007).

A common expectation and empirically reported effect

of intensive and size-selective harvesting is the downsizing

of body size (Conover and Munch 2002; Jørgensen et al.

2007; Swain et al. 2007; Al�os et al. 2014). Beyond correla-

tions between body size and a range of early life-history

traits, any selection on body size may also affect underlying

physiological and behavioral characteristics through corre-

lated selection responses (Walsh et al. 2006; Uusi-Heikkil€a

et al. 2008; Diaz Pauli and Heino 2014). Several, not mutu-

ally exclusive, mechanisms may be at play. For example,

adults may be large because they are efficient in converting

energy into somatic growth (an energy conversion mecha-

nism), because they mature late (an energy allocation

mechanism) or because they are dominant, bold and

aggressive in social interactions and hence superior in

securing and defending food resources (an energy acquisi-

tion mechanism; Enberg et al. 2012). Large individuals

may be also more active and explore the environment more

in search for food and they may be able to do so due to

lower predation risk (Biro and Post 2008). Any changes in

adult body size in response to size-selective fisheries can

thus be a consequence of changes in juvenile growth rate

(which is an unconfounded measure of growth rate capac-

ity not affected by maturation changes, Enberg et al. 2012),

altered maturation schedules (leading to altered energy

allocation patterns), or represent an indirect response to

selection due to direct selection on correlated behavioral or

physiological traits (Walsh et al. 2006; Uusi-Heikkil€a et al.

2008; Biro and Stamps 2010; Enberg et al. 2012). There-

fore, size-selective fisheries might also induce changes in

physiological traits (e.g. metabolism) or behavior (e.g.

aggression, boldness) that contribute to energy acquisition

and hence growth (Enberg et al. 2012; Sutter et al. 2012;

Al�os et al. 2015). Most empirical studies on fisheries-

induced evolution (FIE) have so far focused on three key

life-history traits, namely growth rate, age and size at matu-

ration, and reproductive investment (e.g. Rijnsdorp 1993;

Olsen et al. 2004; for reviews, see Policansky 1993; Heino

and Godø 2002; Sharpe and Hendry 2009; Devine et al.

2012; Audzijonyte et al. 2013b). Currently, there is little

doubt that FIE in the wild could be both plausible and

potentially widespread (Jørgensen et al. 2007; Kuparinen

and Meril€a 2007). However, examination of the joint

effects of size-selective fisheries on several traits, including

physiology (e.g. metabolism), behavior (e.g. feeding activ-

ity) and life history (e.g. growth capacity), in terms of the

resulting effects for population dynamics and fisheries has

been largely confined to modeling studies (e.g. Th�eriault

et al. 2008; Andersen and Brander 2009; Dunlop et al.

2009; Enberg et al. 2009; Matsumura et al. 2011), and the

potential management consequences of FIE remain the

least well-understood aspects of FIE (Jørgensen et al.

2007). Notwithstanding the ongoing controversy of

whether harvesting causes genetic as opposed to mere phe-

notypic change, human-induced rapid phenotypic trait

change may trigger equally fast ecological change and

thereby shape populations, food webs, and ecosystems on a

global scale (Darimont et al. 2009; Palkovacs et al. 2012).

Because life-history, morphological, and behavioral traits

are at least moderately heritable (Mousseau and Roff

1987), intensive and size-selective fishing over multiple

generations is expected to cause genetic (i.e. evolutionary)

changes in a range of traits (e.g. Law 2007; Dunlop et al.

2009; Laugen et al. 2014; Marty et al. 2015). Genetic

changes, as opposed to mere phenotypic change, may mag-

nify the ecological challenges related to overfishing because

they are usually slowly, if at all, reversible in the absence of

similarly strong natural selection pressures working in
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opposite direction than harvest selection (Conover et al.

2009) and thus may have lasting effects on populations and

consequently on fisheries. Indeed, meta-analyses, modeling

studies, and experimental work have all shown that evolu-

tionary effects of harvesting can impair biomass recovery of

overharvested populations (Conover et al. 2009; Enberg

et al. 2009; Kuparinen and Hutchings 2012; Neubauer et al.

2013), affect management reference points (Heino et al.

2013), and reduce catchability and hence catch rates and

fisheries quality (Philipp et al. 2009; Al�os et al. 2015). Fish-

eries-induced adaptive change might thus have multiple

consequences for the population and the fishery, in particu-

lar when slowly reversible genetic, as opposed to plastic,

changes are involved (Laugen et al. 2014). Despite increas-

ing concern about the effects of size-selective harvesting on

wild fish populations (Borrell 2013), the consequences of

FIE for populations and fisheries continue to raise contro-

versy (Browman et al. 2008; Jørgensen et al. 2008; Ander-

sen and Brander 2009; see also Bunnefeld and Keane 2014).

Although exploited fish populations can consist of individ-

uals of reduced average adult body size for both demo-

graphic and evolutionary reasons (Jørgensen et al. 2007),

they might remain biologically viable and highly productive

precisely because of the evolution of ‘fast’ life histories, that

is, early maturation and high reproductive investment

(Hutchings 2009; Heino et al. 2013; Jørgensen and Zim-

mermann 2015). Modeling studies also suggest that if fish-

ing pressure can be kept within optimal limits, FIE is not

expected to cause major economic repercussions (Eikeset

et al. 2013; Jørgensen and Zimmermann 2015).

The concern about fisheries-induced evolution was first

raised at the beginning of the 20th century (Rutter 1902),

but has only gained significant momentum since the 1990s

when Law and coworkers published their groundbreaking

research on FIE (e.g. Law and Grey 1989). Although the

potential for rapid FIE is now theoretically, and also empir-

ically, well founded (Jørgensen et al. 2007; Kuparinen and

Meril€a 2007; Laugen et al. 2014), conclusively detecting it

in natural populations has remained a challenge due to the

limited opportunities for disentangling plastic and genetic

responses in a suite of phenotypic traits (Allendorf et al.

2008; Naish and Hard 2008; Therkildsen et al. 2010; Cuve-

liers et al. 2011; P�erez-Rodr�ıgues et al. 2013). In theory,

experiments on FIE could also be designed in the wild

(McAllister and Peterman 1992), but the cause-and-effect

mechanism of size-selective harvesting can best be studied

experimentally in controlled laboratory environments

(Conover and Baumann 2009; Diaz Pauli and Heino 2014).

However, to date, only few experimental studies have con-

clusively reported harvest-induced genetic changes based

on quantitative genetics (Conover and Munch 2002;

Philipp et al. 2009) or molecular approaches (van Wijk

et al. 2013). While there is little doubt that FIE might be

occurring in practical fisheries, the magnitude of life-his-

tory and other phenotypic changes, the specific genes under

selection, and the way how the phenotypic and genetic

changes affect fisheries, population viability, productivity,

and recovery remain largely unresolved (Jørgensen et al.

2007; Heino et al. 2013; Laugen et al. 2014).

From a conservation and management perspective, fish-

eries-induced phenotypic changes are of particular concern

if they affect population dynamics, viability, and recovery

(Hutchings and Fraser 2008; Dunlop et al. 2009; Heino

et al. 2013; Laugen et al. 2014). There is ongoing debate

whether FIE can significantly affect populations and ecosys-

tem services on timescales that are relevant to fisheries

managers (Andersen and Brander 2009; Laugen et al.

2014). Here, we present the results of a selection experi-

ment that provides a comprehensive picture of the evolu-

tionary legacy of size-selective harvesting by examining its

phenotypic, genetic, and population-level consequences. A

major part of this experiment was to quantify phenotypic

and genetic changes in response to five generations of size-

selective harvesting in wild zebrafish (Danio rerio) in the

laboratory using functional genomic markers that can

occur close by, within, or in the regulatory areas of genes

under selection. Phenotypic changes were scaled up to the

population level using a life-history model. Our results

provide important insights into FIE, such as how quickly

fishing might bring about evolutionary changes, and con-

tribute to the ongoing debate over whether size-selective

harvesting causes evolutionary changes in ecologically and

economically important phenotypic traits (e.g. in adult

body size), and whether these changes matter for biomass

renewal, population stability, and conservation.

Materials and methods

Size-selective harvesting and breeding design

We used F1-generation offspring from approximately 1500

wild-collected zebrafish (parental stock) from West Bengal

in India (see Uusi-Heikkil€a et al. 2010 for details) in our

selection experiment to ensure maximum genetic variation.

Our three experimental treatments, each with one replicate

(i.e. two tanks per treatment) consisted of approximately

450 zebrafish per replicate tank. We reared individuals in

each generation in identical environmental (Supporting

Information S1) and density conditions in three replicated

selection treatments similar to Conover and Munch’s

(2002) landmark study. In contrast to Conover and

Munch’s (2002) design where maturation was triggered by

photoperiod and harvesting occurred at a fixed age, the

timing of harvesting in our experiment was determined by

the maturation schedule of the randomly harvested control

treatment: Once 50% of the randomly harvested fish were

mature (determined macroscopically from 20 lethally sam-
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pled females), we harvested 75% of individuals in all treat-

ments size selectively or randomly according to size. Hence,

as not all fish were mature at harvesting, the design repre-

sented a harvesting pattern that targeted both mature and

immature fish. Prior to harvesting, we measured the stan-

dard length (SL) of all fish in all tanks to the nearest mm

and wet mass (WM) to the nearest 0.1 g. During harvest-

ing, we sorted the fish by SL and estimated the 75th and

the 25th percentiles of the size distributions. To mimic a

highly intensive lethal capture fishery (Lewin et al. 2006;

Worm et al. 2009; Hilborn and Stokes 2010), we applied a

75% per-generation harvest rate. In the randomly selected

line (random with respect to sizes that were harvested), we

measured all fish and then assigned the fish randomly with

respect to body size to either the harvested group or to the

spawning stock. In a large-selected line, we assigned the

25% largest fish to the spawning stocks, and in the small-

selected line we assigned the 25% smallest fish to the

spawning stocks. The large-selected line hence represented

a mortality schedule mimicking a maximum-length limit

where the largest mature fish survived. The small-selected

line instead represented a positive size-selective harvest

scheme common to most fisheries, where young immature

fishes are saved because they are not vulnerable to the gear

(e.g. too small to become entangled in a fishing net) and/or

have to be released due to the minimum-length limit regu-

lations. There was no unharvested control for logistical rea-

sons. A subsample of F1-generation fish from each selection

line (N = 50 per selection line) was measured at age

60 days to ensure that there were no initial differences in

body size when the selection experiment was started (large-

size selected: 15.2 � 2.79 mm; randomly selected:

15.0 � 2.26 mm; small-size selected: 15.8 � 2.58 mm;

mean � SD; v2 = 1.8105, P = 0.4044).

After harvesting, we kept the spawners from each of the

six experimental populations in separate aquaria for

14 days to ensure that most fish reached maturity before

initiating the spawning trial. To increase the odds of all

spawners contributing to the next generation, we mimicked

natural spawning conditions (Hutter et al. 2010) by trans-

ferring small groups of individuals to spawning boxes. The

boxes contained a mesh structure that prevented egg canni-

balism (Uusi-Heikkil€a et al. 2010, 2012a). We used two

sizes of spawning boxes. Five-liter spawning boxes were

each stocked with two females and four males, and three-

liter spawning boxes were each stocked with one female

and two males (altogether 40 females and 80 males per

selection line from F1- to F6-generation). We measured the

SL and WM of each spawner before placing it into a spawn-

ing box. Females were swapped among boxes once during

the spawning trial to ensure a high number of parental

combinations and to sustain genetic variation. Spawning

trials lasted for 5 days. Each day we cleaned the spawning

boxes, placed fertilized eggs on petri dishes, and transferred

the petri dishes to an incubator (Tintometer GmbH;

T = 26°C). We reared hatchlings in the spawning boxes

(adults were removed) for 30 days and then transferred

them to the rearing tank that their parents were from. The

selective harvesting was repeated again when 50% of the

randomly selected fish were mature.

We continued the size-selective harvesting for five gener-

ations (F1–F6) and then halted size selection up to four

generations (F7–F10). To estimate the strength of selection

during the first five generations, per-generation standard

deviation-standardized selection differentials (also known

as selection intensity), which describes the difference in the

average body size between the spawners and the entire

experimental population standardized by the phenotypic

standard deviation, were estimated for each generation sep-

arately following Matsumura et al. (2012). Note that given

our harvesting design, where age at harvest varied from

generation to generation in line with potential changes in

age at 50% maturation of the random line, did not allow

the estimation of selection responses with respect to size at

age. From the F6-generation onward, 100 individuals per

selection line were randomly selected for spawning, and, as

in previous generations, their offspring were reared in iden-

tical environmental and density conditions. Comparisons

of life-history traits among selection lines were conducted

two to three generations postselection, and physiological

and behavioral traits four generations postselection, in tri-

als where the rearing and growth conditions were strictly

standardized among lines. This was performed to remove

all confounding maternal and paternal effects and any

potential epigenetic effects, thereby increasing the odds that

life-history evolution was measured in a comparative way.

For example, producing the next generation of fish was

time-consuming, and in some cases, populations of our

selection treatments were started a couple of weeks apart

and consisted of slightly different-aged offspring. Uncon-

trolled environmental effects during the subsequent hold-

ing phase might affect life histories, so the comparison of

different traits among the selection lines was performed

only after keeping the selected fish for at least two genera-

tions without any further selection under controlled and

time-matched conditions. Life-history, physiological, and

behavioral traits were assessed using offspring from parents

that had experienced at least two generations of no selec-

tion. For the among-line comparisons, experimental fish of

all lines were produced and reared at the same time and in

identical conditions. This approach was similar to earlier

work in male guppies (Poecilia reticulata; van Wijk et al.

2013). Admittedly, delaying the assessment of life-history,

physiological, and behavioral traits might not be always

desirable in terms of experimental design because the fish

might have started converging back to their original life
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histories as shown by Conover et al. (2009). At the same

time, our experimental design can give us some insight into

the persistence of potential harvest-induced changes and

certainly allowed comparisons among lines that were un-

confounded by uncontrolled tank or rearing effects.

Assessment of life-history, physiological, and behavioral

traits

We assessed a range of life-history, physiological, and

behavioral traits expected to change in response to size

selection after five generations of size-selective harvesting.

We focused on life-history traits commonly studied in the

context of FIE, namely juvenile and adult growth rates,

reproductive investment and maturation schedule (Heino

et al. 2013) as well as early life-history traits (Walsh et al.

2006). Moreover, any changes in energy allocation might

be related to metabolic changes (e.g. routine metabolism)

or changes in energy acquisition patterns related to behav-

ior (exploration and boldness; Enberg et al. 2012). Hence,

we also measured standard metabolic rate and measures of

risk-taking behavior and exploration in juvenile zebrafish.

Growth

To study the growth differences among the selection lines

after five generations of size-selective harvesting, we used

replicate boxes (each stocked with 10 fish) for each of the

experimental populations and their replicate lines (alto-

gether 48 rearing boxes). We measured the SL and wet

mass (WM) of the F9-generation fish (i.e. third generation

after the selection was halted) every 15 days from age

30 days to age 210 days. To derive growth and other

growth-related life-history traits, we fitted a biphasic

growth model (Lester et al. 2004) to length-at-age data

(sexes combined) from each experimental population. The

biphasic growth model produced estimates for several key

life-history traits, such as juvenile growth rate (h), repro-

ductive investment (g), age at maturity (T), length at matu-

rity (L), and asymptotic length (L∞), and expected

instantaneous mortality rate (M). For more information

about the growth experiment and the growth model, see

Supporting Information S2.

Maturation

To estimate the plasticity in age and size at maturation that

stemmed from growth variation among the selection lines,

we conducted a maturation experiment in which F8-gener-

ation fish (i.e. second generation after the selection was

halted) were reared under three different feeding condi-

tions (1%, 2%, and 4% of body weight in dry food daily)

following the protocol in Uusi-Heikkil€a et al. (2011). We

used the demographic estimation method (Barot et al.

2004) for estimation of the probabilistic maturation reac-

tion norms (PMRNs; Dieckmann and Heino 2007) for each

selection treatment (see Supporting Information S3).

Reproductive performance and early life-history traits

We estimated the reproductive performance and potential

differences in early life-history traits among the selection

lines using F9-generation fish. Variables of interest included

spawning frequency, clutch size (number of fertilized eggs

produced by female, that is, absolute fecundity) and the rel-

ative fecundity (number of fertilized eggs per gram of

female WM; these three were measures of reproductive per-

formance), egg size, egg survival, larval hatching probabil-

ity, larval age at hatch, larval length at hatch, larval yolk sac

volume, swim bladder inflation probability, and larval sur-

vival (these were measures of early life-history traits; Sup-

porting Information S4). In all statistical analyses, selection

line was treated as a predictive variable, and selection line

replicate, spawning day and couple (i.e. the spawning

female and male) were treated as random variables. If there

was virtually no variance associated with the random vari-

ables, they were excluded from the model. We modeled

count data with a Poisson and probability data (e.g. hatch-

ing probability) with a binomial error structure. To gener-

ate predictions of a potential selection line-specific trait

divergence and to control for the effect of female body size

on early life-history traits (i.e. size-dependent maternal

effects, Hixon et al. 2014), female size was added as predic-

tive variable in a second set of models (except in the larval

survival probability where larvae from different spawning

couples were pooled). Our approach of running models

with and without female size as covariate allowed us to

examine whether differences in reproductive traits were

associated with maternal body size or whether the traits

had evolved independently of maternal size.

Metabolic rate

We used juvenile zebrafish of the F10-generation (i.e. fourth

generation after the selection was halted) to study differ-

ences in mass-specific standard metabolic rate (SMR)

among the selection lines. Juveniles were used to achieve a

measure of base metabolism unaffected by maturation. SMR

was measured as rates of oxygen uptake calculated according

to a previously published protocol (Dupont-Prinet et al.

2010). We ensured that assumptions of homogeneity and

normality of residuals were met, and examined differences

in SMR among treatments using a linear mixed model, with

selection line as a predictive variable, and selection line repli-

cate as a random variable (Supporting Information S5).

Behavior

To study differences in boldness and exploratory behavior

as measures of energy acquisition-related behaviors (Enberg

et al. 2012) among the selection lines, we used the same
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fish that were tested for SMR. Each individual was tested

twice for its exploration behavior in an open-field test in a

novel environment similar to Ariyomo and Watt (2012). In

each trial, a single focal fish was introduced into a transpar-

ent plastic cylinder in the center of the arena (Supporting

Information S5). After a brief acclimatization period, the

cylinder was carefully removed and the fish movement was

videotaped for 5 min (1st trial). Measurements were

repeated for each individual after a break of 30 min (2nd

trial). Test fish were measured for total length (TL) and

WM after the tests were completed to not stress the fish. As

a first proxy for exploration, we calculated the individual

mean velocity during each trial (distance moved in 250 s).

We further scored the time that a fish spent freezing

(defined as not moving faster than 20 mm�s) as another

proxy for its exploration and degree of boldness (assuming

that fish that freeze less are more explorative and bold).

To analyze the data, we first searched for correlations

between both response variables (i.e. velocity and time

spent freezing) using a principle component analysis

(PCA) for both test trials (Supporting Information S5). We

used the first principal component (PC1) as a response var-

iable in a linear mixed model in which selection treatment,

experimental trial, TL, and WM were predictive variables

and individual and selection line replicate were random

variables. Model fitting was performed by first evaluating

the random effects through likelihood ratio tests. We then

excluded all covariates with P > 0.1 and refitted the model.

In the final model, all other explanatory variables could be

excluded, except the selection treatment (predictive vari-

able) and the individual (random variable). More details

are given in the Supporting Information S5.

Evolutionary rate

We estimated evolutionary rates in body size at age 90 days

for each selection line using haldanes (Haldane 1949).

Haldanes were calculated as:

ððv2=spÞ � ðv1=spÞÞ=t;
where v is the mean body length at age 90 days after one

generation of selection (F2-generation, v1) and after five

generations of selection and three generation of no selection

(F8-generation, v2), sp is the pooled standard deviation of

trait values across time, and t is the number of generations.

Mean body lengths at age 90 days were measured from a

subsample of fish collected at F2- and F8-generations.

Genetic analyses

To determine whether size-selective harvesting induced

genetic changes in the experimentally exploited zebrafish

populations, we used 371 genomewide, evenly distributed

single nucleotide polymorphisms (SNPs) that were chosen

from a previously analyzed wild zebrafish dataset (Whiteley

et al. 2011) in 502 individuals (Supporting Information

S6). Outlier analysis was conducted for F6-generation indi-

viduals (i.e. first generation after the selection was halted)

using the Fdist method (Beaumont and Nichols 1996)

implemented in software LOSITAN – Selection Workbench

(Antao et al. 2008). We studied the differences in allele fre-

quencies of outlier loci among selection lines with PCA.

Because outliers detected by the outlier test can be caused

by allele frequency divergence in any number of experi-

mental replicates, we directly examined allele frequency

variation for the outlier loci to further characterize the nat-

ure of the parallel adaptive divergence. This was performed

by creating 95% confidence intervals for the allele frequen-

cies of the selected lines by bootstrapping the allele fre-

quency data. We then determined whether the confidence

intervals of the selection lines and selection line replicates

overlapped. By doing so for each outlier locus, we identi-

fied the selection treatment responsible for the allele fre-

quency differences (and the detection of the outlier loci).

We identified genes that were nearby outlier loci on the

same linkage group using a SNP database (www.ncbi.nlm.

nih.gov) and the Zebrafish Model Organism Database

(www.zfin.org).

Population growth model

We estimated the finite rate of population growth (k) of

each selection line under different harvest scenarios (with

and without size-dependent harvesting) via a density-

dependent Leslie matrix model that incorporated evolved

life-history traits (i.e. h, g, T, and M, see section ‘Growth’

above), fecundity estimates that were based on empirical

zebrafish egg weight data, and age-dependent survival

probabilities that were determined, with certain adjust-

ments, using empirical estimates of early life-history traits,

that is, fertilization rate, egg survival, hatching probability,

and larval survival (Supporting Information S7). For sim-

plicity, we modeled only females. We studied the perfor-

mance of individuals from the large- and the small-selected

treatments by comparing the population growth rate of a

variant individual in an equilibrium population repre-

sented by the randomly selected life history. We introduced

three prototypical size-dependent harvest mortality scenar-

ios in the population dynamical model: (i) small-size har-

vested, which mimicked a harvest slot as harvesting only

started on maturing fish and large mature fish were saved,

(ii) randomly harvested, which represented unselective har-

vesting with respect to body size, and (iii) large-size har-

vested, which represented a standard positive size-selective

fishery and/or a fishery managed with a minimum landing

size or minimum-size limit (i.e. small-selected experimen-
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tal fish) (Supporting Information S7; Fig. S2). Actual values

of maximum daily instantaneous mortalities and length

limits were determined to mimic our experimental 75%

per-generation harvest rate. Accordingly, the maximum

daily instantaneous mortality (Fmax) and the lower (L1) and

upper (L2) limits of the harvesting scheme for each mortal-

ity scenario were as follows: small-size harvested:

Fmax = 0.01825 per day, L1 = 20.8 mm, and L2 =
24.1 mm; randomly harvested: Fmax = 0.009125 per day,

L1 = 20.8 mm, and L2 = ∞; and large-size harvested:

Fmax = 0.01825, L1 = 23.7 mm, and L2 = ∞ (see Support-

ing Information S7; equation 8, Fig. S2, and Table S10 for

details). To reveal potential costs of evolution, we com-

pared the population recovery between the three selection

lines after exposure to fishing. To that end, during the first

4000 days (about 30 generations), we introduced size-

selective fishing mortality of a similar selectivity as in the

experiment (represented by the three harvesting schemes

mentioned above) and then stopped fishing and allowed

the populations to recover up to 8000 days (about 60 gen-

erations). For detailed methodological information of the

population growth model, including equations, see Sup-

porting Information S7.

Results

Selection intensities

As expected, we found the harvesting mortality that mim-

icked positive size-selective fisheries mortality (i.e. small-

selected fish) exerted negative standard deviation-standard-

ized selection differentials (i.e. selection intensity) on body

length, while the random fish experienced selection inten-

sity close to zero (Fig. 1). By contrast, selection for large

body size (large-selected fish) exerted a consistently positive

standardized selection differential on body length (Fig. 1).

In the last generation of the selection experiment (F5-gen-

eration), the selection intensity on body size in the small-

selected fish was also close to zero. The reason was that in

the last selected generation, the average body size of the

small-selected fish in the experimental population was too

small (18.7 � 3.21 mm) for a timely reproduction after

selection. To not risk the experiment, it was necessary to

apply a slightly higher size threshold (20 mm) when select-

ing the spawners of the small-selected line. Thus, the small-

selected fish only experienced four rather than five genera-

tions of intensive size-selective harvest.

Life-history changes

After five generations of size selection followed by three

generations of no selection, the small-selected fish had

evolved a significantly lower asymptotic length (L∞)

(27.4 � 0.40 mm) compared to the other selection lines

(random 29.2 � 0.29 mm; large-selected 29.5 � 0.59 mm;

Fig. 2A, Table 1). The small-selected fish were also signifi-

cantly smaller (9.7 � 1.96 mm) when the growth experi-

ment started (at age 30 days) compared to random

(10.4 � 2.09 mm) and large-selected fish (10.5 � 1.87

mm; v2 = 15.20; df = 4,6; P = 0.0005; Fig. 2A). Despite

the lower maximum length, small-selected (and random)

fish exhibited a somewhat, yet statistically not significantly,

higher juvenile growth rate (h; Fig. 2B; Table 1). Small-

selected and random fish also invested more energy in

reproduction (g) (Fig. 2C, Table 1) and matured earlier

(T) than large-selected fish in the growth experiment

(Fig. 2A, Table 1). Despite the similar age at maturation,

small-selected fish matured at a smaller size (L) than ran-

dom and large-selected fish (Fig. 2A, Table 1). The instan-

taneous natural mortality (M) estimated from the

parameters of the biphasic growth model (Supporting

Information S2) was higher among small-selected and ran-

dom (0.018 and 0.017/day, respectively) than among large-

selected fish (0.015/day).

The probabilistic maturation reaction norm (PMRN)

describes the 50% probability of maturation as a function

of age and size (and potentially other traits affecting matu-

ration) while controlling for the effect of growth on matu-

ration. The maturity ogive used in the estimation of the

age-, length-, and condition-based PMRNs included the

main effects of age, length, and condition. Condition was a

significant factor determining maturity among small- and

randomly selected but not among large-selected fish (Sup-

porting Information S3; Table S1). None of the interaction

terms in the ogive models were significant. The three-

dimensional PMRNs estimated for large- and small-

selected fish largely overlapped on the right-hand side of

the curve (low growth rate) but not on the left (high
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Figure 1 Standard deviation-standardized selection differential (S; also

known as the selection intensity) estimated for each generation sepa-

rately. Red, gray, and blue symbols and lines represent populations of

small, random, and large fish, respectively.

© 2015 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 8 (2015) 597–620 603

Uusi-Heikkil€a et al. Evolutionary legacy of size-selective harvest



growth rate) where small-selected fish exhibited somewhat

reduced age and size at maturation (Fig. 2D). The PMRN

intercept estimated for the random fish was higher than the

ones estimated for the small- and large-selected fish, partic-

ularly on the left-hand side of the curve, indicating that

under fast growth random fish matured at older age and

larger compared to the small- and large-selected fish. Varia-

tion (measured in standard deviation) in body size across

all ages in restricted growth conditions was higher among

random fish (SD 3.4 mm; range of SL 9–25 mm) com-

pared to the large-selected (SD 2.7 mm; range of SL 9.0–
23 mm) and small-selected fish (SD 2.6 mm; range of SL

8.0–23 mm).

Changes in reproductive performance and early life-

history traits

Without controlling for female body size, small-selected

fish of the F9-generation had a significantly lower spawning

probability (0.28 � 0.05; mean � S.E.) than large-

(0.51 � 0.05) and randomly selected fish (0.44 � 0.05;

Table 2). Furthermore, small-selected fish produced signif-

icantly fewer eggs than random and large-selected fish

(lower absolute fecundity), also relative to body size (i.e.

relative fecundity, Fig. 2E), and overall smaller eggs than

large-selected fish (Table 2). In terms of relative fecundity,

small-selected fish exhibited higher values compared to

random fish, but these differences were not significant.

Large-selected fish produced slightly larger larvae

(3.45 � 0.013 mm) than small- (3.38 � 0.021 mm) and

randomly selected fish (3.41 � 0.023 mm), but neither

these differences were statistically significant (Table 2).

Unexpectedly, the offspring produced by random fish had

lower hatching probability (0.58 � 0.03) than offspring of

either large- (0.85 � 0.02) or small-selected fish

(0.80 � 0.03; Table 2). The offspring of random fish also

took longer to hatch (5.2 � 0.08 days) than the offspring

of large- (4.9 � 0.05 days) and small-selected fish

(4.7 � 0.08 days; Table 2). Other early life-history traits,

in particular the larval traits, (Table 2) did not differ signif-

icantly among the selection lines.

When female body size was added as a predictive variable

in the analyses, it explained a significant amount of varia-

tion in spawning probability, in absolute and relative

fecundity (particularly in small-selected fish), in egg size,

and in hatching probability (Table 3). Across all selection

lines, larger females were more likely to produce eggs more

frequently and at higher numbers, but the eggs they pro-

duced were smaller and suffered from lower hatching prob-

ability. In all of these analyses, except spawning probability,

selection treatment remained a significant explanatory vari-

able even after controlling for female size, but again there

were few significant effects of either selection treatment or

female body size on larval traits (Table 3).

Changes in metabolic rate

Standard metabolic rate (SMR) did not differ among the

selection lines (linear mixed model, F2,119 = 0.157,

P = 0.855). The average SMR of a standardized fish weigh-

ing 0.1 g was 0.0738 � 0.0053 mg h�1 for small-selected,

0.0781 � 0.0057 mg h�1 for random, and 0.0753

� 0.0053 mg h�1 for large-selected fish.
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Figure 2 Differences among selection lines in life-history traits and

reproductive output. Data are mean � SEM for panels (B), (C), and (E).

Red, gray, and blue symbols and lines represent populations of small-,

randomly, and large-selected fish, respectively. (A) Biphasic growth

curves (dotted lines refer to treatment-specific age T and length at

maturity L). (B) Average juvenile growth rate (h) (small-selected

0.190 � 0.045; random 0.194 � 0.040; large-selected 0.167 � 0.025

mm�d). (C) Average daily reproductive investment (g) (small-selected

0.021 � 0.003; random 0.020 � 0.004; large-selected 0.017 �
0.005). (D) 50% quantiles for the probabilistic maturation reaction

norms (PMRNs; note that most plastic responses in maturation shift the

phenotype along the reaction norm, whereas an evolutionary response

in maturation shifts the reaction norm itself). (E) Average relative fecun-

dity (small-selected 26.6 � 5.83; random 19.8 � 3.44; large-selected

43.3 � 8.03 eggs/g female). (F) Simulated population-level conse-

quences of life-history changes induced by size-selective harvesting.

Population recovery was monitored after large-size harvested fishing

was operated for the first 4000 days.
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Changes in behavior

In the behavioral analysis, the PC1 scores for the behavioral

traits differed significantly among the selection lines (Sup-

porting Information S5; Table S3). The PC1 captured

behaviors (swimming velocity and time spent freezing) that

were suggestive of risk taking and boldness. Large-selected

zebrafish were significantly more explorative and bolder

(i.e. swam with higher mean velocities and spent less time

freezing) than small- (P = 0.047) and randomly selected

fish (P = 0.01). Based on the high repeatability value (0.47)

for the PC1 score, individuals were highly consistent in

their boldness behavior between the 1st and the 2nd trial

(v2 = 16.54, df = 1, P < 0.001). The consistency may be an

indicator of personality.

Evolutionary rate

The evolutionary rate in body size at age 90 days, estimated

as haldanes, was 0.165 for randomly selected fish, 0.053 for

the large-selected fish, and �0.116 for small-selected fish.

Genetic changes

Among the 371 SNPs, we identified 22 outlier loci that

responded to divergent selection as indicated by high

genetic differentiation (P < 0.025) (Supporting Informa-

tion; Table S4). There was also evidence of balancing selec-

tion at 12 loci (Supporting Information; Table S5).

However, loci under divergent selection are of greatest rele-

vance to studies such as ours and were thus explored in

more detail. A PCA on the outlier SNPs found substantial

evidence for similar amount and direction of genetic

change within each size-selected replicate and relative to

the random replicates after five generations of size-selective

harvesting (Fig. 3).

In eight of the 22 outliers, differences in allele frequencies

were significant and consistent between the selection line

replicates (Supporting Information; Table S6) as there was

virtually no overlap in 95% confidence intervals for both

size-selected replicates of one selection line (e.g. large-

selected) relative to other treatment replicates (e.g. small-

selected and random; Supporting Information; Table S6,

Fig. 4). Parallel allele frequency divergence at these eight

loci (hereafter parallel outlier loci) made drift an unlikely

explanation and revealed that the mechanistic response

underlying adaptive divergence was similar for a subset of

loci. For an additional six outlier loci, the significant differ-

ence in allele frequency occurred in one of the treatment

replicates (Supporting Information S1). Selection may be

responsible for these single replicate-specific results, but it

is more difficult to rule out genetic drift in this case. Six of

the eight parallel outlier loci were in significant linkage dis-

equilibrium (LD; P < 0.05) with a nearby SNP on the same

linkage group (Supporting Information; Table S7).

Five of the eight parallel outlier SNPs occurred in or

close to a gene or in a regulatory region of a gene that has a

known function, such as serotonin synthesis, ion transport,

regulation of transcription, and collagen formation

(Table 4). Furthermore, six of the parallel outlier SNPs

were in significant LD with another SNP that occurred in a

gene or in a regulatory region of a gene with a known func-

tion, such as embryonic yolk processing, immune response

system, and stress response (Table 4).

Table 1. Differences in life-history parameters among the selection lines as estimated by the biphasic growth model.

Trait Selection line Parameter estimates (SE) Chi-square value* (df) P-value

Juvenile growth rate (h; mm) Large 0.167 (0.013) 4.8999 (3,5) 0.0863

Random 0.194 (0.012)

Small 0.189 (0.013)

Maximum length (L∞; mm) Large 29.53 (0.592) 29.946 (3,4) <0.0001

Random 29.24 (0.371)

Small 27.37 (0.398)

Age at maturity (T; d) Large 106.2 (3.001) 12.490 (3,4) <0.0001

Random 94.14 (4.027)

Small 91.27 (4.315)

Length at maturity (L; mm) Large 22.89 (0.449) 0.9742 (3,4) <0.0001

Random 22.61 (0.300)

Small 21.15 (0.322)

Daily reproductive investment (g) Large 0.017 (0.001) 6.4809 (3,4) 0.0109

Random 0.020 (0.001)

Small 0.021 (0.002)

Parameter estimates for each treatment for each trait are shown. P-values were derived from chi-square statistics. The selection line differing signifi-

cantly from the other treatments is indicated in bold.

*Chi-square value from the deletion of the variable from the full model.
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Population-level consequences of harvesting-induced life-

history evolution

The population model revealed that, in the absence of fish-

ing, small-selected zebrafish had lower population growth

rates per day than random or large-selected fish (0.18%

and 0.20% lower, respectively; Table 5). By contrast, when

fish in the model were exploited in a similar positively size-

selective manner as in our experiment (as would for exam-

ple be typical in a minimum-length limit scenario, i.e.

small-size selection), the population growth rate per day of

small-selected fish exceeded that of the random and large-

selected fish (by 0.12% and 0.14%, respectively; Table 5).

When standardizing the population growth rate by genera-

tion time of the random fish, these differences revealed that

the population growth rate of small-selected fish was 25.5%

lower than the one of random fish in the absence of fishing,

while it was 40.5% higher than the one of random fish

when exploited with a minimum-length limit. Accordingly,

during the period when positively size-selective fishing was

operating, small-selected fish showed the slowest popula-

tion decline among the treatments but when fishing was

stopped, the speed of recovery by small-selected fish was

slower than that of the other two selection lines (Fig. 2F).

Moreover, small-selected fish did not recover to the pre-

exploitation densities when we assumed no potential for

life-history evolution during population recovery (Fig. 2F).

Finally, small-selected fish did not perform well when ran-

Table 2. The effect of the selection treatment on zebrafish reproductive performance and early life-history traits.

Trait Selection line Parameter estimates* (SE) Chi-square value† (df) P-value‡

Spawning probability Large 0.4911 (0.2764) 12.138 (3,4) 0.0005

Random 0.4437 (0.3160)

Small 0.2614 (0.3086)

Fecundity (eggs/female/day) Large 9.1831 (0.4543) 779.16 (3,5) <0.0001

Random 5.3896 (0.0396)

Small 3.6352 (0.0354)

Relative fecundity (eggs/g of female WM/day) Large 14.050 (0.4698) 498.52 (3,4) <0.0001

Random 8.5289 (0.0315)

Small 8.6313 (0.0246)

Egg yolk size (mm) Large 0.7286 (0.0116) 82.959 (3,4) <0.0001

Random 0.6611 (0.0077)

Small 0.6618 (0.0076)

Egg survival probability Large 0.9490 (0.5148) 0.958 (3,5) 0.6194

Random 0.9609 (0.5993)

Small 0.9310 (0.5810)

Hatching probability Large 0.9037 (0.4083) 8.943 (3,4) 0.0028

Random 0.6177 (0.5684)

Small 0.8365 (0.6003)

Larval age at hatch (days) Large 4.4977 (0.3788) 8.7742 (5,7) 0.0124

Random 4.9623 (0.5411)

Small 4.5052 (0.5820)

Larval size (mm) Large 3.6893 (0.1457) 3.2586 (4,6) 0.1877

Random 3.5411 (0.1218)

Small 3.4732 (0.1247)

Yolk sac volume (mm3) Large 0.0234 (0.0052) 2.5359 (5,7) 0.2814

Random 0.0171 (0.0045)

Small 0.0237 (0.0039)

Swim bladder inflation probability Large 0.7561 (0.3926) 1.0741 (4,6) 0.5845

Random 0.7282 (0.3188)

Small 0.7999 (0.3573)

Larval survival probability Large 0.9094 (0.2916) 3.4567 (3,5) 0.1776

Random 0.8284 (0.3893)

Small 0.8935 (0.4169)

WM, wet mass.

Parameter estimates values are given for each treatment and for each trait. Selection treatment differing significantly from the other lines indicated

in bold.

*Logit-transformed estimated parameters for binomial distributed data and log-transformed estimated parameters for Poisson distributed data.

†Chi-square value from the deletion of the variable from the full model.

‡P-values derived from the chi-square statistics.
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dom harvesting (with respect to body size) or dome-shaped

size-selective harvesting (representing large-selection with a

harvest slot-length limit) was operating (Table 5, Support-

ing Information S7; Fig. S3). The modeling results of the

relative performance of each of the three life histories were

robust to parameter uncertainties (Table 5). Although the

performance of small-selected fish relative to the other

selection lines varied with fishing mortality, small-selected

fish outperformed the other selection lines as long as posi-

tively size-selective fishing was operating with moderate or

high intensity (Fig. S4). Another noteworthy finding was

that the population dynamics of the large-selected and the

random fish were often quite similar when fishing was

operating, suggesting that these two life histories were per-

forming functionally equivalent.

Discussion

Our experimental approach in zebrafish demonstrated

changes in genotypes, phenotypes, and population dynam-

ics in response to just five generations of size-selective

harvesting. Thus, our results present a comprehensive pic-

ture of the evolutionary legacy of size-selective exploitation.

Controlled laboratory environment and a specific harvest-

ing design allowed controlling for size-dependent and other

parental and epigenetic effects. This helped us to establish

Table 3. The effect of female body size (standard length; SL mm) and selection treatment on zebrafish reproductive performance and early life-his-

tory traits.

Trait Variable Parameter estimates* (SE) Chi-square value† (df) P-value‡

Spawning probability Treatment 0.0047 (0.0454) 0.0249 (3,5) 0.9876

Female SL 18.693 (2,3) <0.0001

Fecundity (eggs/female per day) Treatment 197.92 (4,6) <0.0001

Large-selected 0.0076 (0.5096)

Random 0.0049 (0.0404)

Small-selected 0.0110 (0.0065)

Female SL 0.2448 (0.0107) 571.57 (5,6) <0.0001

Relative fecundity (eggs per g of female WM per day) Treatment 398.15 (4,6) <0.0001

Large-selected 0.0748 (0.4892)

Random 0.0488 (0.0318)

Small-selected 0.1204 (0.0461)

Female SL 0.1805 (0.0075) 607.74 (5,6) <0.0001

Egg yolk size (mm) Treatment 21.691 (5,6) <0.0001

Large-selected 0.7362 (0.0430)

Random 0.7110 (0.0073)

Small-selected 0.6793 (0.0087)

Female SL �0.0048 (0.0014) 11.817 (6,7) 0.0006

Egg survival probability Treatment 0.9581 (3,5) 0.6194

Female SL 0.0011 (5,6) 0.9740

Hatching probability Treatment 12.984 (5,7) 0.0015

Large-selected 0.9999 (3.4546)

Random 0.9998 (0.5575)

Small-selected 0.9997 (0.8234)

Female SL �0.2796 (0.1146) 5.9779 (6,7) 0.0145

Larval age at hatch (d) Treatment 8.7742 (5,7) 0.0124

Large-selected 4.4977 (0.3788)

Random 4.9623 (0.5411)

Small-selected 4.5052 (0.5820)

Female SL 1.7207 (7,8) 0.1896

Larval size (mm) Treatment 3.3456 (4,6) 0.9585

Female SL 0.0847 (6,8) 0.1877

Yolk sac volume (mm3) Treatment 2.5359 (5,7) 0.2814

Female SL 1.3175 (7,8) 0.2510

Swim bladder inflation probability Treatment 1.0741 (4,6) 0.5845

Female SL 0.1670 (6,7) 0.6828

Parameter estimates are given for the significant covariates, which are indicated in bold.

*Logit-transformed estimated parameters for binomial distributed data and log-transformed estimated parameters for Poisson distributed data.

†Chi-square value from the deletion of the variable from the full model.

‡P-values derived from the chi-square statistics.
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unambiguous cause (size-selective harvesting)-and-effect

(phenotypic and genetic changes) relationships (Diaz Pauli

and Heino 2014) reinforcing the possibility that intensive

harvesting of wild populations can indeed lead to fisheries-

induced evolution (FIE). Despite introducing obvious sim-

plifications by maintaining discrete generations and allow-

ing only single reproductive events, our selection

experiment has value because it allowed the assessment of

various phenotypic traits ranging from life-history traits to

physiology and behavior and applying a genomic approach

to discover specific genes under selection. Five generations

of size-selective harvesting of wild zebrafish affected life

history and behavior by elevating reproductive investment,

decreasing mean maximum body size and reproductive

output, and reducing boldness. The evolved phenotypic

changes in the small-selected fish were overall relatively

subtle and often statistically nonsignificant in relation to

the random fish, but they were accompanied by genetic

changes and large population dynamical effects. These

results collectively showed that contemporary harvest-

induced evolution is conceivable in response to intensive

size-selective exploitation. The population model further

revealed that the phenotypic and genetic changes induced

by positive size selection allowed fish to adapt to harvest-

ing, but hindered population recovery in the absence of

exploitation. Our results overall highlight the potential for

large, harvest-induced population-level consequences to

emerge from rather subtle phenotypic changes in response

to positively size-selective exploitation that might easily go

unnoticed when monitoring natural populations.

We examined the outcome of five generations of size-

selective harvesting by comparing the phenotypes of indi-

viduals among selection treatments several generations

after selection was halted. Hence, our results are conserva-

tive because delaying the trait assessment up to four gener-

ations without harvesting probably had resulted in some

recovery of phenotypic traits due to fecundity selection

similar to the case in the famous Atlantic silverside (Meni-

dia menidia) experiment (Conover et al. 2009; Salinas et al.

2012). Moreover, for logistical reasons, we only exerted

negative selection differentials on body size for four rather

than five generations in our fishing treatment (the small-

selected line, Fig. 1), further reducing the potential for phe-

notypic (and genetic) change. We nevertheless documented

effects of positively size-selective harvesting on a range of

traits and also presented molecular evidence of directional

selection altering the genotypes, reinforcing the previously

expressed notion that rapid evolutionary change is possi-

ble over very short time periods of intensive size-selective

harvesting (Conover and Munch 2002; van Wijk et al.

2013).

Evolved differences in growth and behavior

According to the biphasic growth model, small-selected fish

(under selection similar to most capture fisheries managed

with minimum-length limits) reached significantly lower

mean maximum body size (L∞) than large-selected and

random fish, but there was no significant difference in early

growth rate (h) among the selection lines (Fig. 1A,B).

These findings were in line with recent field evidence in

heavily exploited coastal marine fish species (Al�os et al.

2014) and have been also reported elsewhere (N�ussle et al.

2009). Early maturation at small size and high reproductive

investment can together explain the lower L∞ of the small-

selected fish given the fundamental energetic trade-off

between growth and reproduction (Enberg et al. 2012). In

addition to such differences in energy allocation, juveniles

of the small-selected fish evolved differences in energy

acquisition because they were significantly less bold in an

open-field experiment compared to large-selected fish.

These results suggest that the small-selected zebrafish

evolved a more cautious behavioral type and personality,

likely in relation to feeding behavior, which might have

contributed to their lower body size at harvesting. Simi-

larly, small-selected fish in the Atlantic silverside study

evolved lower food consumption and were less willing to

forage under threat of predation (Walsh et al. 2006). Varia-

tion in exploration and boldness can have fitness conse-

quences because these behaviors can facilitate foraging

success (Stamps 2007; Klefoth et al. 2012), dispersal (Cote

et al. 2010), cognitive performance (Vital and Martins

2011), reproduction (Ariyomo and Watt 2012), and sur-

vival (Smith and Blumstein 2007; Biro and Stamps 2008).

Moreover, boldness and exploration relate directly to vul-

nerability to fishing gear (Al�os et al. 2012, 2015; H€ark€onen
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Figure 3 A principal component analysis on allele frequencies of the

22 outlier loci illustrates a similar amount and direction of genetic

change occurred among the selection lines induced by size selection

after five generations of harvesting. Red lines and symbols indicate

small-, gray randomly, and blue large-selected replicates.
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et al. 2014; Diaz Pauli et al. 2015). Therefore, increased

timidity as an evolutionary response to size-selective fishing

will negatively affect catch rates (Philipp et al. 2009),

reduce angler satisfaction (Arlinghaus et al. 2014), and

potentially also affect the economic value of a fishery.

Moreover, when catchability declines so does the value of

fishery-dependent information to index stock size (Al�os

et al. 2015).

A common assumption in the fisheries literature is that

size-selective mortality should reduce growth rate (Conover

and Munch 2002; but see Walters and Martell 2004 for a

critical view of this apparently intuitive prediction). By

contrast, we found that small-selected zebrafish did not dif-

fer significantly in their juvenile growth rate compared to

random and large-selected fish, and there were also no

physiological differences in standard metabolic rate (and,

therefore, in physiological growth capacity) among the

selection lines. In fact, there was a tendency for small-

selected and random fish to grow faster than large-selected

fish (Fig. 1B). This agrees with modeling work (Matsumura

et al. 2011) and empirical data in positively size selectively

exploited fisheries (van Walraven et al. 2010). The lack of
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significant differences in juvenile growth (which, unlike the

adult growth rate, is a clean measure of growth capacity;

Enberg et al. 2012) could have been caused by our harvest-

ing design where each fish could only spawn once. Hence,

in the random line, larger females, which also carried more

eggs due to the positive relationship of female size and

fecundity (hereafter referred to as fecundity selection), after

harvesting were likely selectively favored, in turn likely cre-

ating a selection pressure on fast juvenile growth rate

despite a nonselective harvest pattern relative to size. Simi-

larly, in the small-selected line, the fastest growing fish

probably contributed more eggs to the next generation and

this maintained positive selection pressure on fast juvenile

growth. Thus, harvesting alone, even when nonselective,

could have had a similarly strong effect as size-selective

harvesting on the evolution of fast juvenile growth through

fecundity selection (Engen et al. 2014). In other words, the

lack of substantial differences in juvenile growth rate

among random and the small lines could be indicative of a

lack of additional evolution of size-selective harvest com-

pared to unselective harvesting. Not having a nonharvest

control precludes our ability to fully understand the rela-

tive effects of selection pressures on juvenile growth rate

caused by unselective versus size-selective harvesting. Nev-

ertheless, our results support theoretical arguments and

empirical data that one should not generally assume that

size-selective harvesting will cause evolution toward low

growth rates (Walters and Martell 2004; van Walraven

et al. 2010; Enberg et al. 2012). In fact, the opposite can

and will occur in many situations because when adult mor-

tality rate is elevated, it is advantageous to be as large as

possible on the first spawning attempt to outpace the high

mortality rate with higher reproductive output (Boukal

et al. 2008; Dunlop et al. 2009; Matsumura et al. 2011), as

in our experiment.

The weak response of juvenile growth rate of small-

selected fish after five generations of size-selective harvest-

ing is in contrast to a groundbreaking experimental study

on harvest-induced selection in Atlantic silversides by Co-

nover and Munch (2002), who reported a steep decline in

(juvenile) growth rate after four generations of size-selec-

tive harvesting. Although silverside and zebrafish share

many life-history and behavioral characteristics (e.g. high

fecundity, small egg size, external fertilization, and school-

ing behavior), silverside are semelparous, while zebrafish

are iteroparous batch spawners. These differences in life-

history strategies could strongly affect energy allocation

patterns and thus juvenile growth. Silverside is a capital-

breeding species that uses stored energy to make large

investments into reproduction, and females typically repro-

Table 4. Outlier loci with the most pronounced, replicable allele frequency divergence among selection treatments and which occur in or close to a

gene with known function.

SNP name Treatment Type Gene name Gene function

rs40907508 Large 6¼ small UTR LysM The chemical reactions and pathways resulting

in the breakdown of macromolecules that form

part of a cell wall

rs40688310 Large and random 6¼ small UTR Tryptophan hydroxylase 2 The chemical reactions and pathways involving

aromatic amino acid family. Controls brain

serotonin synthesis in human and mice

rs40655095 Large 6¼ small S eph receptor B2b The process of introducing a phosphate

group on to a protein. Regulates transcription

rs40856687 Large 6¼ small In atp1b3b Ion transport

rs41238352 Large 6¼ small In col5a1 Collagen formation. Collagen strengthens

and supports many tissues, such as bones

and muscles

rs41141381 UTR Cathepsin L 1 a Involved in embryonic yolk processing

rs40878095 NS Interleukin-1 receptor-associated

kinase 4

Involved in innate immune response system

in zebrafish (Stein et al. 2007)

rs40784742 UTR lims1 Involved in cardiac contraction and heart

beating

rs40769175 UTR Guanylate cyclase activator 1C Involved in calcium signaling in the eye and in

light regulation, circadian rhythms and

stress response (Scholten and Koch 2011,

Wegener et al. 2011)

rs40739415 D Ddt Inner ear development

Also shown are the type of the variant (S, synonymous, UTR, untranslated region, D, downstream gene variant, In, intron variant), gene name, and

gene function.

SNPs in LD with an outlier loci occurring within or close to a gene with a known function are in italics.
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duce in years when they have accumulated a threshold level

of stored energy reserves (Bull and Shine 1979). By con-

trast, income breeders, such as zebrafish, spend energy on

reproduction as it is gained (J€onsson 1997). Furthermore,

Conover and Munch (2002) exerted a greater harvesting

pressure (90% per generation) compared to the present

experiment in zebrafish (75% per generation), and this

might have affected the results by increasing the selection

response in juvenile growth rate. Most importantly, how-

ever, in the silverside study, juvenile traits were exclusively

under selection because maturation was induced by photo-

period after the experimental harvesting (Diaz Pauli and

Heino 2014). This experimental procedure channelized

selection differentials on juvenile growth rate, in contrast

to the present case in zebrafish where reproductive traits, in

particular reproductive investment, were allowed to be

under selection in addition to juvenile growth rate. A

recent selection experiment in male guppies (Poecilia retic-

ulata) similarly demonstrated evolution in maturation and

only a minor change in juvenile growth rate after only three

generations of selection (van Wijk et al. 2013). However,

that study differed from ours because it focused on deter-

minately (rather than indeterminately) growing males

(rather than males and females combined). In general,

however, responses of juvenile growth rate to harvesting

vary among species and fisheries, and one should not nec-

essarily expect juvenile growth rate to decline in response

to positively size-selective harvesting (Walters and Martell

2004; Enberg et al. 2012).

Maturation

While reproductive investment increased in response to

selection for small body size in our experiment, we saw lit-

tle differentiation in the maturation schedule (represented

by the probabilistic maturation reaction norm, PMRN;

Heino et al. 2002; Dieckmann and Heino 2007) between

small- and large-selected zebrafish after five generation of

size-selective harvesting. It is noteworthy, however, that

although the PMRNs of small- and large-selected fish lar-

gely overlapped, investigation of the left part of the

PMRNs, that is, the area where food was abundant and

growth rate was high, indicated that small-selected fish

matured somewhat earlier and at smaller size than large-

selected zebrafish (Fig. 2D). This pattern was consistent

with the predicted reduced age at maturation (T) that we

estimated from growth under ad libitum food conditions

(Table 1). The high size- and age-specific maturation prob-

ability of random fish could have been affected by unselec-

tive harvesting. Despite we lacked a nonharvest control, the

evolved differences in the random fish still represent

adaptation to unselective fishing. However, we based the

timing of harvesting on the 50% maturation status of theT
a
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random fish; thus, one should have expected a lower

PMRN intercept compared to the large-selected fish as

indicative of earlier maturation. It is more likely that the

higher size- and age-specific maturation probability in the

random line was caused by the large-size variation com-

pared to large- and small-selected fish. In zebrafish, social

dominance is size dependent (Paull et al. 2010) and in ran-

dom fish the variation (measured as standard deviation) in

body size during the maturation experiment across all ages

was substantially higher (3.0 mm), particularly in growth-

restricted conditions, compared to small- (2.5 mm) and

large-selected fish (2.5 mm). Accordingly, the higher size-

and age-specific maturation probability of the random fish

could have been caused by size-dependent social hierar-

chies or other social factors, which have been shown to

inhibit and delay reproduction for example in guppies

(Diaz Pauli and Heino 2013).

While the evolution of elevated reproductive invest-

ment g (Fig. 2C) and lower L∞ (Table 1) in response

to size-selective harvesting among small-selected fish

was consistent with empirical and theoretical studies

(e.g. Rijnsdorp 1993; Jørgensen et al. 2007; Sharpe and

Hendry 2009; van Walraven et al. 2010), the lack of

substantial difference in the maturation schedule caused

by selective harvesting (as inferred from the PMRN)

may seem counterintuitive. However, our experiment

was based on nonoverlapping generations; hence, each

selected spawner could contribute to the next genera-

tion just once during one spawning event at a fixed

age. Therefore, our experiment prevented early-maturing

fish from benefiting from the increase in spawning fre-

quency, which is a key fitness benefit associated with

early maturation when adults face a high risk of mor-

tality (Poos et al. 2011). The conditions in our experi-

ment were thus artificial and in contrast with the

conditions in the wild. In the wild, fisheries maturation

schedules have been found to readily respond to har-

vest selection as indicated by large changes in the

PMRN’s intercepts and slopes in many stocks, and

these changes were often much more pronounced than

changes in other life-history traits, such as reproductive

investment (Hutchings and Fraser 2008; Sharpe and

Hendry 2009; Devine et al. 2012; Audzijonyte et al.

2013b). Therefore, it is important not to misinterpret

our results as evidence that elevated or size-selective

mortality does not alter the maturation schedule of

exploited fish species. In fact, evolutionary response in

maturation is expected under most exploited conditions

when generations overlap (Devine et al. 2012). Further

experiments with overlapping generations are needed to

fully understand how maturation will evolve in

response to size-selective harvesting (Diaz Pauli and

Heino 2014).

Evolved differences in reproductive success and early life-

history traits

Evolutionary downsizing of adult body size, especially of

females, can have large consequences for offspring produc-

tion and larval viability (Johnson et al. 2011), for example

through direct fecundity decline associated with the reduc-

tions in adult body size or indirectly through size-depen-

dent maternal effects on egg and offspring quality (Walsh

et al. 2006; Arlinghaus et al. 2010; Hixon et al. 2014). In

our study, we demonstrated a positive association between

maternal body size and reproductive output (spawning

probability and fecundity; Table 3). Larger females had a

higher spawning probability, which was exclusively deter-

mined by female body size and not affected by the selection

treatment. Female body size was also positively associated

with fecundity. Large females of many fish species have

been found to have higher amount of energetic resources

to allocate to reproduction compared to small females and

thus are able to spawn more frequently and produce a

higher number of eggs (Hixon et al. 2014), in line with our

findings in zebrafish reported here and elsewhere (Uusi-

Heikkil€a et al. 2010). Maybe somewhat surprisingly egg size

was negatively associated with maternal body size. This

could represent a fundamental egg number – egg size

trade-off and relate to smaller females compensating their

lower fecundity by producing larger eggs (Hendry et al.

2001; Uusi-Heikkil€a et al. 2010). Similarly, the negative

relationship between female size and hatching probability

could be related to the above-mentioned trade-off. How-

ever, the biological relevance of egg size as a trait of egg

quality has been questioned before in zebrafish (Uusi-Heik-

kil€a et al. 2010). Irrespectively, when early life-history or

reproductive traits correlate with the focal trait under selec-

tion (i.e. adult body size), these traits can respond via cor-

related selection response due to genetic covariance

(Munch et al. 2005). We found significant differences in

fecundity (but not in spawning probability) and in several

early life-history traits (egg size, hatching probability, and

larval age at hatch) among the three selection lines even

after statistically controlling for maternal body size, sug-

gesting an evolutionary response unrelated to size-depen-

dent maternal effects.

After just five generations of selection, large-selected fish

produced more and larger eggs compared to small-selected

and random zebrafish, and there was a modest nonsignifi-

cant increase in relative fecundity in small-selected fish

compared to random fish (Fig. 2E). As reproductive invest-

ment increased in the small-selected line compared to the

random line, this likely compensated for the evolution of

smaller adult body size and maintained fecundity high and

largely unaltered with respect to the random line. It is sur-

prising that there were such large differences in fecundity
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between random and large-selected zebrafish despite their

similar maximum length (Fig. 2A). These differences could

have been caused, at least partly, by size-dependent domi-

nance hierarchies. In zebrafish, dominance and aggression

are positively associated with increasing body size (Paull

et al. 2010). Larger differences in spawner body sizes in

random females (SD 1.99 mm; range 24–32 mm) com-

pared to large-selected females (SD 1.37 mm; range 27–
31 mm) could have maintained higher level of aggression

between females and males in the spawning boxes occupied

with random fish and resulted in lower egg production.

Also, males being larger than females, which by chance

should have been occurred more often in the random line

given the larger size range of the spawners, could have

affected egg production due to female stress caused by male

dominance (D. Bierbach, S. Uusi-Heikkil€a, P. Tscheligi, C.

Wolter and R. Arlinghaus, unpublished data). Further-

more, zebrafish females allocate more reproductive

resources to more preferred, large males (Uusi-Heikkil€a

et al. 2012b), and because in large-selected line males were

generally larger, large-selected females could have released

more eggs toward them compared to random line, where

fewer females were coupled with a large male.

Similar to the fecundity assessments, it is also notewor-

thy that there were no large differences in egg traits

between the small-selected and random fish. Earlier studies

in zebrafish showed that egg size might not be a major

determinant of larval quality (Uusi-Heikkil€a et al. 2010).

Instead, offspring quality may be better indicated by larval

traits such as age at hatch, size at hatch, and the amount of

nutrient reserves (yolk sac volume). Large-selected and ran-

dom fish produced slightly larger larvae than small-selected

fish, but the differences were not statistically significant and

the differences neither translated into shorter hatching time

as an indicator of better larval condition and faster devel-

opment rate (Kimmel et al. 1995). Hence, size-selective

fisheries selection did not substantially alter egg and larval

traits when comparing the small-selected fish with the ran-

dom line. However, random fish had a significantly greater

spawning probability than small-selected fish, suggesting

that the random fish still might have greater reproductive

fitness compared to the small-selected fish.

Despite the lack of differences in early life-history traits

and juvenile growth rate, our results suggest that random

and large-selected fish exhibited faster larval growth than

small-selected fish. This was indicated by the large differ-

ences in body at age 30 days (Fig. 2A) when the growth

experiment started. Despite their similar sizes at hatch

(Table 2), random and large-selected fish were significantly

larger at age 30 days compared to small-selected fish. Fast

larval growth has fitness benefits because it allows larvae to

pass the most vulnerable life-history stages quickly, and

although there might be some costs related to fast growth

(e.g. increased larval mortality; Pepin 1991), it has also

been suggested that even slightly enhanced rates of early

survival and growth can translate into increased probability

of subsequent recruitment (Houde 1987; Hare and Cowen

1997).

Overall, the differences in early life-history traits among

zebrafish selection lines were substantially smaller (and

often nonsignificant) compared to those previously

reported in the silverside study (Walsh et al. 2006). The

inconsistency between the silverside and our study is prob-

ably related to the steeper decline in the body size of

mature silversides after four generations of harvesting and

to the larger difference in body size between small- and

large-selected fish during the spawning trials compared to

our zebrafish study. In fact, large-selected silversides were

more than six times heavier than small-selected ones,

whereas in our study the differences were less than twofold.

Moreover, the differences between these two studies could

again be related to the different life-history strategies of the

two species. Semelparous silversides may invest a much lar-

ger proportion of surplus energy into a single reproductive

season compared to zebrafish, which spread their repro-

ductive effort over multiple batches. Different results

among experimental evolutionary studies reinforce the spe-

cies and environment specificity of FIE, which complicates

the formulation of general predictions about the type and

magnitude of phenotypic changes as a result of size-selec-

tive harvesting (Heino et al. 2013; Laugen et al. 2014).

Evolutionary rate

The degree of decline in adult body size of small-selected

fish in our experiment (7.8% over five generations of selec-

tion) was similar to recent experimental work in male gup-

pies exposed to three generations of size-selective mortality

(7% over three generations; van Wijk et al. 2013) but dif-

fered substantially from the silverside study (25% over four

generations; Conover and Munch 2002). Although the

change in adult body size in our study was significant, such

a subtle phenotypic change in body length might easily go

unnoticed in phenotypic time series from the wild because

fish growth has a large plastic component (Lorenzen and

Enberg 2002). In addition, the rate of evolution of adult

body size that we observed was lower (�0.116 to 0.165

haldanes) than the rate estimated in the male guppy experi-

ment (0.3 haldanes; van Wijk et al. 2013) and much lower

than those estimated for size at maturation from actual

fisheries data (�2.2 to 0.9 haldanes; Devine et al. 2012).

Thus, the phenotypic changes that we observed in the labo-

ratory were conservative relative to the data from the wild,

possibly because the latter include both genetic and plastic

changes and because selection in overlapping generations

may lead to stronger responses in maturation traits than
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revealed in our experiment. Our finding underscores an

important dilemma for FIE studies: While FIE can be wide-

spread in exploited systems (Jørgensen et al. 2007; Devine

et al. 2012; Laugen et al. 2014), it is very difficult to detect

when one is confined to just phenotypic analysis, given that

fish life-history traits are extremely plastic and vary in

response to the environment (Kuparinen and Meril€a 2007;

Law 2007). This issue has potentially contributed to the

lack of broad acceptance of FIE among fishers, fisheries

managers, and some fisheries scientists (Jørgensen et al.

2007; Kuparinen and Meril€a 2007; Law 2007; Hilborn and

Minte-Vera 2008).

Harvest-induced genetic changes

In the genetic analyses, we identified 22 outlier loci

responding to divergent selection (Table S6) and 12 out-

liers indicative of balancing selection (Table S7). The out-

liers indicative of balancing selection were linked to genes

involved in processes such as movement of metal ions

within a cell or between cells (Varshney et al. 2013), prote-

olysis, neuronal development (Ahrens et al. 2012), and gly-

copeptide hormone activity (Alderman and Bernier 2007).

These loci with signatures of balancing selection in F7-gen-

eration might have responded to laboratory rearing envi-

ronment (i.e. captivity). Another possibility is that they are

associated with fecundity selection likely experienced by all

experimental lines. Among the 12 loci that exhibited signif-

icant signatures of balancing selection, three can be consid-

ered as candidates for a fecundity selection hypothesis

(Table S7). None of these loci was directly associated with

genes related to reproduction or fecundity (Table S7),

although they could be in linkage disequilibrium (LD) with

genes that are. Despite the fact that the loci with signatures

of balancing selection might have been indicative of adap-

tation to the laboratory environment, at least some of them

might have been false positives. Inaccurate detection of bal-

ancing selection is an inherent weakness of outlier

approaches (Narum and Hess 2011), and the method

employed here, in particular, has been shown to have rela-

tively high type I error rate for balancing selection (Beau-

mont and Nichols 1996).

Our results provide conclusive evidence that size-selec-

tive harvesting can lead to genetic change in timescale rele-

vant to fisheries. We conservatively focused on the eight

outliers that showed parallel divergence in both size-

selected replicates of one selection line. These outliers and

adjacent loci emerged as the strongest candidates of adap-

tive divergence. Five of the eight parallel SNPs occurred

within or close to a gene with a known function (Table 4)

and six of them were in significant LD with a nearby SNP

on the same linkage group (Table 4). Two of the eight out-

liers were in LD with a SNP that occurs within a regulatory

area of a gene associated with zebrafish embryological

metabolism (Tingaud-Sequeira and Cerd�a 2007) and two

other outliers with SNPs occurring within regulatory areas

of the genes or within genes associated with zebrafish circa-

dian rhythms, stress response, and immune system (Stein

et al. 2007; Scholten and Koch 2011; Weger et al. 2011).

These traits might be important in determining adaptive

responses related to fitness in juvenile and adult fish.

Another parallel outlier was located within a regulatory

area of a gene, which has been found to control brain sero-

tonin synthesis in humans and mice. Serotonin is a key ele-

ment in the synthesis of melatonin, a hormone that affects

feeding behavior and aggression in fish (Falc�on et al.

2010). Differences in melatonin production could relate to

differences in fish exploration tendency, which was found

to evolve in our experiment. Denser SNP panels and map-

ping approaches would be needed to test the functional

role of these genes along with other genes with which they

are in LD.

Population-level consequences

The consequences of even subtle phenotypic changes for

populations could potentially be severe. For example, early

maturation and high investment in reproduction cumula-

tively reduce life span (Jørgensen and Fiksen 2010). Indeed,

the estimated instantaneous natural mortality (M) of zebra-

fish was higher among small-selected and random fish than

among large-selected fish. According to our population

model, under positively size-selective fishing (minimum-

length limit scenario), the small-selected fish population

would exhibit a substantially greater population growth

rate than the random and large-selected fish populations.

This finding supports the idea that life-history changes are

compensatory in that they allow individuals (and therefore

populations) to remain productive in the face of positively

size-selective harvest mortality (Hutchings 2009; Matsum-

ura et al. 2011; Kuparinen and Hutchings 2012; Heino

et al. 2013). Hence, from a fisheries perspective, FIE is not

necessarily negative (Eikeset et al. 2013; Jørgensen and

Zimmermann 2015). However, in our model during a sim-

ulated fishing moratorium, the small-selected fish popula-

tion exhibited a substantially lower population growth rate

than the random and large-selected fish populations

(Fig. 2F and Fig. S2). Our modeling results therefore sug-

gest that FIE impedes population recovery during a mora-

torium, which is in line with previous empirical and

theoretical research (Conover et al. 2009; Enberg et al.

2009; Eikeset et al. 2013; Hutchings and Kuparinen 2014;

Kuparinen et al. 2014; Laugen et al. 2014; Marty et al.

2015). Thus, seemingly subtle changes in life-history traits

could have a strong effect on the recovery rate and rebound

potential of exploited fish populations. Moreover, evolu-
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tionary downsizing in body size of only 0.1% per year over

50 years has been predicted to reduce biomasses up to 35%

in some species (Audzijonyte et al. 2013a). Hence, FIE

matters for the management and conservation of exploited

fish populations, even if phenotypic responses are modest

and seemingly unimportant at an individual level.

Our population model was simplified by design and

therefore subject to caveats. Although the model included

knowledge of density dependence of vital rates in zebrafish,

it used the dominant eigenvalue of the Leslie matrix as a fit-

ness metric although the dominant Lyapunov exponent has

been suggested as an appropriate measure in density-

dependent population models (Roff 2010). In addition, the

model did not incorporate the potential effects of domi-

nance hierarchies and female differential allocation on

zebrafish reproductive output (Uusi-Heikkil€a et al. 2012b).

Moreover, model results were based on the assumption

that the parameters for growth, maturation, and reproduc-

tive investment that we measured in the laboratory would

translate to field conditions. Our approach to fitting the

biphasic growth model (Lester et al. 2004) allowed us to

predict numerous life-history traits that could be incorpo-

rated into the model. However, our approach assumed that

these traits were optimally adapted to treatment conditions.

Our experimental populations might not have reached an

evolutionary stable state after five generations of selection.

Nevertheless, results of the among-population comparison

of population growth rate should be robust to this omis-

sion because the population model itself does not require

the assumption of evolutionary equilibrium and the esti-

mated population growth rates were rather insensitive to

uncertainty of the parameter values of the Lester growth

model (i.e. growth h, reproductive investment g, and matu-

ration T). Finally, we were not able to perform an evolu-

tionary impact assessment (Jørgensen et al. 2007; Laugen

et al. 2014) in a strict sense because we lacked preharvest

life-history data and were unable to compare population-

level effects over time with and without evolution. We thus

could not evaluate the full implications of FIE. Neverthe-

less, there is value in comparing fitness of evolved life-his-

tories (both small- and large-selected fish) relative to the

random fish, and we can interpret our population dynami-

cal results as showing the effect of size-selective harvesting

relative to unselective harvesting.

Conclusions and implications

Much of the current debate around the prevalence of FIE

has centered on whether the observed phenotypic changes

are genetic (Jørgensen et al. 2007; Kuparinen and Meril€a

2007; Law 2007) and if so, whether these changes matter

for population dynamics and hence management (Hutch-

ings and Fraser 2008; Andersen and Brander 2009; Kupari-

nen and Hutchings 2012; Laugen et al. 2014; Marty et al.

2015). The strength of our experimental study is that it

establishes an unambiguous cause-and-effect relationship

by showing that (i) size-selective harvesting can lead to

genetic and a range of phenotypic changes in contemporary

timescales, (ii) a relatively low evolutionary rate, and (iii)

seemingly subtle phenotypic changes in individual life-his-

tory traits can cumulatively have a strong effect on popula-

tion growth rate and recovery potential. FIE can help to

maintain a productive population while harvesting is inten-

sive, but our results suggest that the same population

adapted to exploitation is expected to recover slowly and

may not reach pre-exploitation levels when fishing is

relaxed. Our work on the evolutionary legacy of size-selec-

tive harvesting thus reinforces the notion that the potential

for FIE and its population-level consequences are of rele-

vance to fisheries management and conservation. Negative

consequences of FIE will be particularly large for stocks that

have been poorly managed in ecological and economic

terms (Eikeset et al. 2013; Jørgensen and Zimmermann

2015) for a long period of time (Neubauer et al. 2013), and

in such cases, it is critical that the ecological and evolution-

ary consequences of fishing are being carefully evaluated

and mitigated.

A straightforward measure that can help curtail the lar-

gely inevitable FIE (Matsumura et al. 2011) is to carefully

control fishing mortality to keep it within ecologically sus-

tainable and economically optimal bounds as shown in two

recent modeling studies in a FIE context (Eikeset et al.

2013; Jørgensen and Zimmermann 2015). A second com-

plementary measure could be to manage the fishing-

induced selectivity, which may produce positive outcomes

from a human perspective (e.g. evolution of large adult

body size as opposed to downsizing of adults, Boukal et al.

2008; Jørgensen et al. 2009; Matsumura et al. 2011). For

example, we found that the population dynamics of large-

selected fish, which evolved large asymptotic adult body

size, did not differ from the random fish in any of the mod-

eled fishing scenarios (Fig. 2F and Fig. S2). Large-selected

fish were exposed to a maximum-size harvest; thus, our

results could be interpreted that saving large fish selects for

life histories that are more similar to unselectively exploited

fish compared to a strictly positively size-selective exploita-

tion common with minimum-length limit regulations and

in most other real fisheries. Previous modeling studies have

also emphasized a superior performance of harvest slots

(i.e. dome-shaped selectivity where large fish and small fish

are saved from harvesting) over standard minimum-length

limits in terms of reducing selection responses in matura-

tion and other traits while facilitating evolution of large

adult size under certain conditions (Hutchings 2009;

Jørgensen et al. 2009; Matsumura et al. 2011). Therefore,

when feasible and desired by stakeholders, the implementa-
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tion of maximum-size limits or harvest slots at the expense

of using minimum-size limits could be recommended as an

additional measure of altered selectivity patterns to com-

plement management measures directed at controlling fish-

ing mortality.
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