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Abstract

Harvesting wild animals may exert size-independent selection pressures on a

range of morphological, life history, and behavioral traits. Most work so far has

focused on selection pressures on life history traits and body size as morpholog-

ical trait. We studied here how recreational fishing selects for morphological

traits related to body shape, which may correlate with underlying swimming

behavior. Using landmark-based geometric morphometrics, we found consistent

recreational fishing-induced selection pressures on body shape in two recrea-

tionally exploited marine fish species. We show that individuals with larger-

sized mouths and more streamlined and elongated bodies were more vulnerable

to passively operated hook-and-line fishing independent of the individual’s

body size or condition. While the greater vulnerability of individuals with larger

mouth gapes can be explained by the direct physical interaction with hooks,

selection against streamlined and elongated individuals could either involve a

specific foraging mode or relate to underlying elevated swimming behavior.

Harvesting using passive gear is common around the globe, and thus, size-inde-

pendent selection on body shape is expected to be widespread potentially leav-

ing behind individuals with smaller oral gapes and more compact bodies. This

might have repercussions for food webs by altering foraging and predation.
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Introduction

Hunters and fishers nonrandomly harvest animals based

on the traits they carry, which results in phenotypic and

potentially genetic changes (Allendorf and Hard 2009). In

many cases, larger-bodied individuals are preferentially

captured and removed from the population, which may

evolutionarily alter life histories and have repercussions

for recovery, catchability, and yield (Jørgensen et al. 2007;

Laugen et al. 2014; Al�os et al. in press). The consequences

of fisheries-induced direct or indirect selection on behav-

ioral traits are less understood, but it may be also relevant

under certain situations (Heino and Godø 2002;

Uusi-Heikkil€a et al. 2008). For example, there is increas-

ing evidence that the odd of catching fish with passively

operated gears, like hook-and-line, increases with swim-

ming activity, space use, and in some species with risk-

taking behavior (boldness) (Al�os et al. 2012, in press; Biro

and Post 2008; Heino and Godø 2002; Klefoth et al.

2012, 2013; Olsen et al. 2012; Sutter et al. 2012; but see

Wilson et al. 2011). In fact, changes in life history traits

like boldness may emerge from direct selection on behav-

ioral traits in some species (Biro and Post 2008;

Uusi-Heikkil€a et al. 2008; Al�os et al. in press). Compared

to selection studies in terms of life history and behavior,

limited studies exist that have examined selection

pressures acting on morphological traits other than body

size. However due to the often higher heritability of mor-

phological traits compared to life history or behavioral

traits (Mousseau and Roff 1987), selection on body shape

may lead to rapid evolution of low-vulnerability morpho-

types in response to fishing-induced selection (Heino and

Godø 2002).

Most wild-living fish populations show large intraspe-

cific variability in body shape, providing ample opportu-

nity for natural or fisheries-induced selection to act on

(Langerhans and DeWitt 2004). For example, gape-size-

limited predators usually preferentially consume more

slender individuals, creating selection pressures for

humped body shapes (Br€onmark and Miner 1992; Chivers

et al. 2007). Harvesting through fishing may similarly

generate size-independent selection differentials acting on

morphological traits due to two major processes: (i) the

physical interaction with the fishing gear and (ii) the

potential covariation of body shape with other fitness-

related traits. Indeed, due to the physics of the capture

process in meshes, more streamlined fish tend to be selec-

tively advantaged in gillnet fisheries because slender fish

have a lower probability of retention in the nets than

more humped individuals (Hamon et al. 2000). The

physical interaction of fish with hooks is less studied

compared to gill nets, but for fishing hooks to catch fish,

hooks have to fit in the mouth of fish. With increasing

hook sizes, progressively larger individuals are captured

(Erzini et al. 1997; Al�os et al. 2008; Cerd�a et al. 2010),

which should lead to selection pressures on small mouth

gapes in heavily exploited fish species. Indeed, a larger

vulnerability to fishing was documented for species that

have larger mouth gapes, even when mouth size was cor-

rected for variation in body size among individuals (Kar-

pouzi and Stergiou 2003).

Besides this direct physical selection induced by hooks

on aspects of morphology in fish, selection on morpho-

types could also occur as a by-product when other traits

are subjected to selection that covary with morphology.

For example, intraspecific variability in body shape has

been associated with different behavioral traits such as

swimming behavior (Nilsson et al. 1995; Domenici and

Blake 1997; Walker 1997; Andersson et al. 2006; Chivers

et al. 2007; Pettersson 2007; Domenici et al. 2008), anti-

predator responses (Br€onmark and Miner 1992; Nilsson

et al. 1995; Domenici and Blake 1997; Walker 1997; Chi-

vers et al. 2007; Domenici et al. 2008; Hulth�en et al.

2014), habitat choice (Ehlinger 1990; Bourke et al. 1997),

and adaptation to the local hydrodynamic conditions

(Fulton et al. 2005; Langerhans 2008; Franssen 2011;

Franssen et al. 2013; Binning et al. 2014). Because of the

growing evidence suggesting that fishing using passive

gears (where encounters of fish with gear depend on

behavior) can generate strong selection differentials on

behavioral traits (e.g., Biro and Post 2008; Uusi-Heikkil€a

et al. 2008; Nannini et al. 2011; Parsons et al. 2011; Wil-

son et al. 2011; Al�os et al. 2012; Klefoth et al. 2012; Ol-

sen et al. 2012; Sutter et al. 2012), such selection on

behavior should indirectly create a selection differential

on the associated morphology. For example, fish with lar-

ger swimming activity that also have a more elongated

body (Andersson et al. 2006) should also have a larger

probability to encounter a passively operated hook, which

in turn should induce selection pressures on behavior

and indirectly on morphology through a correlated

response.

The objective of this study was to search for evidence

for size-independent selection operating on fish body

shape in a recreational marine fishery. We specifically

tested whether recreational fishing is selective for certain

body shapes in a field experiment in two harvested coastal

fish species, Diplodus annularis and Serranus scriba. Our

study is meant to be exploratory by first analyzing

whether selection on morphological traits is conceivable

in an intensive recreational fishery. Further work is

reserved to more mechanistically understand any basis of

morphological variation among the studied individuals in

the wild.
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Materials and Methods

Experimental setting

The basis of our approach was to compare the geometric

body shape of individuals captured by hook-and-line rec-

reational fishing (fished sample) and a random sample

(population sample) of individuals from the population

jointly sampled at the same locality and time. We focused

on two commonly targeted coastal fish species, Diplodus

annularis and Serranus scriba. These species are ecologi-

cally common in temperate coastal areas but are also

among the most popular species targeted by the recrea-

tional fishery in the Mediterranean Sea (Al�os and Arling-

haus 2013). Two experimental study sites in Palma Bay

(Mallorca Island, Western Mediterranean) were chosen,

each with a radius of 1000 m (see online supporting

information Fig. S1). This area encompassed the average

home range of the two species studied here (March et al.

2010, 2011). The location of the two study sites was

selected according to the presence of suitable mesohabitat

(Posidonia oceanica seagrass) and relatively low fishing

and anthropogenic pressure so as to sample a rather natu-

ral assemblage.

To obtain the fraction of the population susceptible to

hook-and-line gear, fishing sessions using recreational

angling gear of 30-min duration were carried out in both

study areas by volunteer anglers (accompanied by a

researcher) following Al�os et al. (2009). Natural bait (i.e.,

pieces of shrimp, Penaeus vannamei, of similar size and

shape) was used, and sessions were performed from an

anchored recreational boat in random places within the

study area. To obtain the random sample of the popula-

tion, we used an experimental active net designed for sci-

entific assessment of fish assemblages inhabiting P.

oceanica seagrass (see Moranta et al. 2006; Deudero et al.

2008). The active net was 3 m large and 1 m high and

had a net body of 8 m (1.2-cm square mesh) and a 2-m-

long cod end (0.6-cm square mesh). The experimental net

was towed three times per site over the seagrass using a

research vessel during 20 min for approximately 900 m.

We assumed that the active net method would capture a

greater fraction of the variation in body shapes present in

the fish assemblage compared to the fished sample, and

although all gears will be selective to some degree, this

method allow the capture of a more random sample than

possible with angling gear. Both samples were obtained

during daytime.

A total of 473 individuals of D. annularis and 302 indi-

viduals of S. scriba were sampled with both gears. Fish

were measured (total length, mm) and weighted (total

weight, g), and a digital image of the left lateral size

of each individual was taken using a digital camera

(Olympus E300) (Fig. 1). We processed a subsample (D.

annularis, n = 126 and S. scriba, n = 139) to confine the

analysis to a narrow size range, that matched in both fish-

ing gears. Although the mean size did not differ between

the origin of the sample (see the electronic supporting

information S2), limiting the body shape analysis to fish

within the same narrow size interval controlled for possi-

ble allometric effects of size on body shape and ensured

that our morphological results were size independent.

Fish with different condition due to variation in food

resource intake are likely to have different body propor-

tions influencing their body shape and hence our analysis

(Einen et al. 1998). To account for systematic variation in

fish condition of fish sampled with both methods (Huse

et al. 2000), we calculated the relative condition index of

the fish and it was used as covariate in the data analysis

(see below). The index was calculated as the ratio between

the observed weight and the predicted weight from an

independently estimated length–weight relationship for

both species of the area (Morey et al. 2003) following the

protocol by Morgan (2004). The relative condition index

was preferred because in contrast to Fulton’s condition

index, it is independent of body size (Morgan 2004).

Controlling for size variation among gears and controlling

body condition was done to remove any potential

confounding effect on body shape and obtain a cleaner

Figure 1. Body shape landmarks (n = 13) acquired in the two study

species. The upper panel shows an individual of Serranus scriba and

the down panel an individual of Diplodus annularis. In both cases, the

coordinates (landmarks) acquired for this study are shown as blue

points (labels from i to xiii).
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relationship of body shape and vulnerability to hook-and-

line fishing gear.

Quantification of body shape and data
analysis

The body shape of each individual was analyzed using a

landmark-based method (Rohlf and Marcus 1993). To

that end, we selected 13 homologous landmarks (Fig. 1).

The coordinates of these landmarks for each individual

were acquired from a dorsal (left side) image of the fish

using the tpsDig2 software (Rohlf 2004). The selected

homologous landmarks were as follows: (i) tip of the

upper jaw, (ii) anterior of the middle axis eye, (iii) pos-

terior of the middle axis eye, (iv) anterior insertion of the

dorsal fin, (v) posterior insertion of the dorsal fin, (vi)

posterior extremity of the lateral line, (vii) posterior

insertion of the anal fin, (viii) anterior insertion of the

anal fin; (ix) insertion of the pelvic fin, (x) posterior cor-

ner of the upper jaw, (xi) corner of the pre-operculum,

(xii) corner of the insertion of the pectoral fin, and (xiii)

upper corner of the operculum. The raw coordinates were

superimposed using general Procrustes superimposition

(GPA) as implemented in the function procGPA from the

shapes library (Dryden 2012) of the R package (R Devel-

opment Core Team 2011). The superimposed coordinates

were used as shape descriptors for further analyses.

Although specimens were carefully placed under the

camera in a standardized way, both species suffered from

some dorsoventral bending (Fig. 2). The shape differences

associated with this bending would not represent true

shape differences among gears (called arching effect,

Valentin et al. 2008) and might obscure any shape pat-

ters. We removed the arching effect by projecting the

shape descriptors onto a vector (Burnaby’s orthogonal

projection) that modeled the shape changes associated

with bending following the method provided by Valentin

et al. (2008). Figure 2 shows the results of applying such

a protocol.

Arching-free shape descriptors were analyzed by con-

ventional multivariate linear modeling. The response

matrix (arching-free body shape) was constructed by the

shape descriptors (columns) of each fish (rows). The

explanatory variables were fish size and fish relative con-

dition (continuous variables), study site (A and B, see

Fig. 1S), and the origin of the sample (hook-and-line vs.

random population). We also considered the interactions

“fish size 9 study site” and “fish condition 9 study site.”

The multivariate analysis was completed using the func-

tion rda as implemented in the vegan library (Oksanen

2005) of the R package. After removing (backward elimi-

nation) nonsignificant variables or interactions, the partial

effects of the variables of interest were tested using a

permutation approach. In addition, a linear discriminant

analysis (LDA) was completed with the multivariate resid-

uals after removing the effects of size, condition, and

study site. The reliability of the differences between sam-

pling methods inferred from LDA was checked via leave-

one-out cross-validation. Finally, the shape corresponding

to the averaged LDA scores for each one of the sampling

methods was regressed on the arching-free shape descrip-

tors for allowing an intuitive visualization and interpreta-

tion of the differences in body shape attributable to each

of the gear samples (Monti et al. 2001; Linde et al. 2004).

A partial least squares (PLS) analysis was performed to

explore whether different regions of the fish body varied

independently (Klingenberg 2009). The PLS was performed

considering two regions: (1) the head (landmarks i, ii, ii, x,

xi, and xiii) and (2) the trunk (landmarks iv, v, vi, vii, viii,

ix, and xii), within the configuration of the whole body,

which takes into account not only shape changes between

regions but also their topology and relative size relation-

ships (Klingenberg 2009). The analysis was performed on

size- and condition-corrected data and pooling within-

group covariances by the origin of the sample and study

Figure 2. Approach to removing the arching effect following

Valentin et al. (2008). Each panel represents the two extreme shapes

of the main gradient of shape variation (first principal component axis

(PC 1) of the shape descriptors; the amount of shape variability

explained is indicated by a percentage). Each landmark of one of the

two extreme shapes is indicated by points, and the other is

represented by lines connecting the two shapes (note that is arbitrary

which of the two shapes is represented by points). Before Burnaby’s

projection, the landmarks (i) and (vi) point toward one direction and

the four central landmarks toward the opposite direction, thus

suggesting that the fish is not correctly aligned but bent. After

projection, (i) and (vi) point at opposite directions and, in the case of

S. scriba (the two panels below), the four central landmarks suggest a

deeper/compressed pattern.
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site. The strength of the covariation between the two body

regions was measured by the RV-coefficient (Klingenberg

2009). This coefficient varies from 0 to 1, where low values

indicate that the regions vary independently and high val-

ues that they vary in a coordinate fashion. The reliability of

the analysis was tested via a permutation test. A significant

permutation test indicated that the RV value of the sample

was higher than it would be expected by random chance

alone; that is, the changes in the two regions would be cor-

related. PLS and permutation tests were completed using

MorphoJ (Klingenberg 2011).

Results

Multivariate linear regression of fish size, fish condition,

study site, and sample origin (hook-and-line sample vs.

random population) on body shape revealed that all of

these explanatory variables had statistically significant

effects in the case of D. annularis (Table 1, note that all

interactions were nonsignificant and, therefore, they were

not included in the final model). The origin of the fish

sample explained a substantial fraction (29.6%) of the

body shape variation among individuals (Table 1). The

predictive capability of the discriminant analysis was high,

with 76.7% and 84.8% of the individuals being correctly

classified as being vulnerable to hook-and-line or consti-

tuting the random population sample, respectively. Simi-

lar results were obtained for S. scriba, for which body

shape variation was also significantly correlated with the

four variables evaluated (Table 1; note that interactions

between the variables were again nonsignificant and were

thus excluded from the final model). The origin of the

sample explained the highest percentage of the body

shape variation (34.7%) among all variables in S. scriba

(Table 1). The predictive capability of the discriminant

analysis in S. scriba was also high, with 73.4% and 76%

of the individuals correctly classified to both fishing gears.

In both species, three key geometric body shape regions

distinguished the average angled individual from the pop-

ulation (Fig. 3). First, the distance between the tip of the

upper jaw (landmark i) and the anterior corner of the

upper jaw (landmark x) (which was related with the

mouth gape) was found to be larger for vulnerable indi-

viduals compared to the random population sampled by

trawling (Fig. 3). Second, the distance between the ante-

rior insertion of the dorsal fin (landmark iv) and the

insertion of the pelvic fin (landmark ix) (which defines

the body depth, that is, degree of streamlining) was smal-

ler for the angled individuals, which indicates recreational

fishing captured more streamlined and shallower fish

compared to the trawled sample (Fig. 3). Third, analysis

of the distance between the tip of the upper jaw (land-

mark i) and the posterior extremity of the lateral line

(landmark vi) (which defines the general elongation of

the body) revealed that the angled individuals were, on

average, more elongated than the whole of the population

(Fig. 3). These three patterns strongly suggested recrea-

tional fishing can induce a selection pressure on mouth

shape and body shape. Note that these patterns were

independent of size, fish condition, or study site (Fig. 3).

The PLS analysis revealed a weak pattern of covariation

between the head and the trunk in both species. In D.

annularis, the value of the RV coefficient was 0.344

(P < 0.001). The first PLS axis (variance explained

61.6%) depicted a pattern of covariation that involved the

streamliness of the trunk and the position of the mouth:

Deeper fishes also had a mouth in a more ventral posi-

tion than shallower fishes (Fig. 4). The second PLS axis

(23.9%) showed a relationship between both the streamli-

ness and elongation of the trunk and the mouth gape:

Deeper and shorter fishes had smaller mouths (landmarks

i and ix) than streamlined and elongated fishes (Fig. 4).

In S. scriba, the value of RV coefficient was 0.339

(P < 0.001). While the first PLS axis (68.0%) showed the

same pattern of D. annularis, the second PLS (14.6%) axis

showed that deeper and shorter individuals had larger

mouths than shallower and elongated fishes (Fig. 4).

These results suggested a relative high potential for inde-

pendent selection of specific body shape regions by recre-

ational fishing gear.

Discussion

We found consistent empirical evidence across two

exploited coastal fish species that recreational fishing is

not a random mortality process in relation to body shape,

while controlling for body size and condition variation.

Specifically, individuals in the population of both species

with larger mouths and more streamlined and elongated

bodies were found to be more vulnerable to hook-and-line

Table 1. Results of the redundancy multivariate analysis performed to

test differences in the geometry of the body shape and the explana-

tory variables considered here for each of the species.

Variable Variance (9105) % variance F Pr (>F)

Diplodus annularis

Fish size 7.77 48.88 12.08 <0.001***

Sample origin 4.701 29.58 7.31 <0.001***

Study site 1.927 12.12 3.00 <0.01**

Fish condition 1.497 9.42 2.33 <0.05*

Serranus scriba

Sample origin 4.43 34.73 8.22 <0.001***

Fish size 3.238 25.39 6.01 <0.001***

Study site 3.109 24.38 5.77 <0.001***

Fish condition 1.977 15.50 3.67 <0.01**

Significant (*), highly significant (**) and very highly significant (***).
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recreational fishing, in turn creating selection for smaller

mouth and deeper bodies. Due to the only small degree of

integration of these three different regions of the body,

wild fish populations should show independent variation

of these specific regions in response to selection by fishing.

The direct physical interaction of a fish with the hooks

can explain why similarly sized individuals with differen-

tial gapes can be expected to have a differential probability

to get hooked. Body shape differences are also well known

to be related to an individual’s routine swimming behav-

ior (Domenici and Blake 1997; Andersson et al. 2006;

Langerhans and David 2010; Jones et al. 2013), which

might also explain why we obtained selection differentials

acting on morphology. Although body shape will also vary

with resource intake (Parsons and Robinson 2007), our

results of a clear relationship of morphology with vulnera-

bility to angling were independent of individual variation

in relative body condition or size. This is an important

finding because it is theoretically possible that the more

slender fish that were more vulnerable to fishing encom-

passed fish of a certain foraging mode in lower condition

and hence in a state of elevated hunger, which is known

Figure 3. Box plots derived from the linear discriminant analysis (LDA) and the mean geometric body shape predicted for an average individual

sampled either of the two methods: fished and population sample (note that these shape changes correspond to the sampling method only; the

effects of “fish size,” “fish condition” and “study site” have been statistically removed). In both species, the main shape differences were

localized at the mouth (landmarks i and x), the insertion of the dorsal and the pelvic fins (landmarks iv and ix) and the posterior extreme of the

lateral line (landmark vi).

Figure 4. Patterns of covariation between the head and the trunk (light and solid black dots, respectively) in D. annularis (the two panels above)

and S. scriba (the two panels below). The coordinates of the landmarks of the first and the second axis of the partial least squares (PLS 1 and 2)

carried out for each species are represented. The maximum (black line) and the minimum (gray line) values observed for each axis of the PLS have

been superimposed to improve visualization.
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to enhance catchability (Huse et al. 2000). Because our

results held while controlling for condition, we favor the

explanation that angling-induced selection on body shape

could be related to direct selection pressures acting on

correlated behavioral traits related to swimming behavior.

Morphological integration is key trait for shaping a species

evolutionary trajectory (Mart�ınez-Abad�ıas et al. 2012), and
hence, fisheries-induced selection in morphology might

have far-reaching consequences for the evolving species.

Our work provides new insights into how the patterns of

morphological integration can be used for understanding

the selective properties of harvesting by identifying how

different body regions exposed to selection can covary and

can be altered by human.

The finding that fishing selects for fishes with larger

mouth can, as mentioned before, most likely be attributed

to the physical constraints emerging from the mouth gape

of fish in relation to the size of the gear (hooks). For

mere physical reasons, individuals with larger mouth

areas will be more prone to ingest hooks or lures than

individuals with small mouths (Lewin et al. 2006). The

fact that vulnerability to fishing is determined by the

physical interaction between the gear and the fish’s mor-

phology has been previously reported for gill nets and

other mesh-based fishing gears (Reis and Pawson 1999;

Hamon et al. 2000; Heino and Godø 2002; Stergiou and

Karpouzi 2003). For example, Hamon et al. (2000)

demonstrated how deeper-bodied sockeye salmon,

Oncorhynchus nerka, had a higher probability of being

entangled in the fishing nets; here the resulting fisheries-

induced selection pressure acted in the opposite direction

of sexual selection and predation-based natural selection

pressures (Kendall and Quinn 2013). The novelty of our

approach is that we provide evidence that hook-and-line

fishing also selects on mouth morphology independent of

the individual’s body size or condition. Given the impor-

tance of the mouth morphology in facilitating the exploi-

tation of foraging niches, which in some species is

strongly involved in sympatric speciation (Wainwright

1988), fisheries-induced selection of mouth morphology

may strongly alter predator–prey relationships and alter

the evolutionary trajectory of exploited species. Therefore,

larger mouth gapes may benefit individuals that are spe-

cialized to prey on large-bodied prey items, like S. scriba

(Karpouzi and Stergiou 2003), and fishing selection on

mouth size can affect negatively the foraging success and

energy intake of surviving individuals.

We also found that a shallower and more elongated

body had a higher vulnerability to be harvested by recrea-

tionally fished hooks. The physiological literature on fish

swimming kinematics strongly supports the hypothesis

that shallower and more elongated fish encompass more

actively swimming individuals within a population

(Br€onmark and Miner 1992; Walker 1997; Andersson et al.

2006; Hanson et al. 2007; Langerhans and David 2010) as

well as individuals that are more prone to continuous,

long-distance swimming at larger swimming speeds

(Domenici and Blake 1997; Walker 1997; Hanson et al.

2007; Langerhans and David 2010; Jones et al. 2013). Such

behavior would increase the probability of encountering

passive fishing gears (Rudstam et al. 1984; Kallayil et al.

2003; Biro and Post 2008; Løkkeborg et al. 2010; Al�os

et al. 2012) and consequently could explain the elevated

vulnerability of shallow and elongated fish to angling gear

as a correlated response of selection on behavior. By con-

trast, a deeper and more compressed body allows for better

maneuverability than a streamlined and more elongated

one (Domenici et al. 2008). Hence, a deeper-bodied mor-

photype is expected to display more tortuous searches for

prey, often involving structured habitat such as that found

in highly vegetated areas (Walker 1997; Pettersson 2007;

Jones et al. 2013; Nash et al. 2013) with a smaller proba-

bility of encountering an angler (Al�os et al. 2012). If mor-

phology is correlated with behavior, our findings suggest

that heavy exploitation by angling should drive exploited

populations not only to become deeper but also to exhibit

more tortuous foraging searches, less dispersal ability, and

smaller activity spaces. Corresponding changes in life his-

tories are possible (Al�os et al. in press), but future research

is needed to study the link of morphology–behavior and

vulnerability to fishing to fully test the hypothesis that we

introduce here based on morphological data alone.

Although there is large plasticity inherent on body

shape (Langerhans and DeWitt 2004), variation in body

depth among individuals has a significant genetic compo-

nent (Toline and Baker 1997; Varian and Nichols 2010).

Natural predation risk thus tends to not only plastically

induce but also select for deeper bodies because this ele-

vates handling time and reduces predation risk for surviv-

ing individuals (Br€onmark and Miner 1992; Andersson

et al. 2006; Domenici et al. 2008; Frommen et al. 2011).

Similarly, deeper-bodied males are often favored by

females in sexual selection and vica versa, presumably

because this indicates a fitter individual (Hamon et al.

2000). Therefore, under high predation risk, natural and

fisheries-induced selection may act in the same direction

for this specific morphological region inducing more

compact and deeper bodies in contrast to the mouth

region where fishing and natural predators acts in the

opposite direction. Hence, the interplay between natural

and fishing selection, as well as the degree of integration of

the fish body shape, does not lead to easy predictions as

to how populations should develop morphologically in

the presence of human exploitation, which is further

complicated by the possibility of indirect selection on mor-

phology through direct selection on behavior. However, if
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our hypotheses that body shape may serve as a proxy of

underlying behaviors gains further support, we might have

found a simple metric that might be used in large-scale

comparative field studies to understand how differentially

wild populations might respond morphologically and

behaviorally to human and/or natural predation.

Three key messages can be derived from our work.

First, fishing can select for a certain combination of mor-

phological traits independent of body size. This selection

process is likely due to two processes: direct selection

caused by the physical features of the hooks relative to

the size of the mouth and possibly as a by-product of

direct selection on behavioral traits. The latter awaits fur-

ther empirical analysis by studying behavior in the wild

and linking behavior and morphology to vulnerability to

fishing. However, collecting detailed spatial data by track-

ing wild animals in their free environment is technologi-

cally challenging (Krause et al. 2013), particularly in

aquatic systems, and is thus unlikely to be available for

large spatial scales. Thus, if our prediction on the

relationship between body shape and behavior receives

further support in other species and systems, body shape

may emerge as a suitable surrogate for behavioral

traits for studies on fisheries-induced phenotypic change.

Second, fisheries-induced selection on morphological

traits can produce strong selection responses over con-

temporary time scales due to the higher heritability of

morphological traits compared to life history or behavior

traits (Mousseau and Roff 1987; Roff 1992, 1997).

Although the heritability of morphological traits will be

species specific (e.g., Hard et al. 2008), a consistent selec-

tion on body shape could induce relatively fast genetic

changes in exploited populations. Proper detection of

fisheries-induced evolution is a key aspect of successful

fish stock management, which requires continuous popu-

lation monitoring (Kuparinen and Meril€a 2007). Because

of the simplicity of its assessment (relative to behavior or

life history), body shapes could develop into simple met-

ric in the study of fisheries-induced adaptive change,

which may be easy in phenotypic time series over time.

Finally, our work suggest a cautionary use of morphologi-

cal information from sampled fish to infer population-

level properties because of the potential sampling bias

associated with samples collected with certain gears (fish-

ery-dependent data, Ricker 1969). For example, passive

sampling gear such as hooks or traps may produce bias

in relation to inferring population-level morphological

trait distribution from samples collected by angling exclu-

sively. Likely, other gears suffer from the same limitation.

We recommend more investigations to analyze how pre-

valent the selection of certain body shapes by different

sampling methods is, particularly when comparing active

and passive fishing methods.
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