

#### Coordination and allocation on land markets under increasing scale economies and heterogeneous actors – an experimental study

Presentation at the SiAg research seminar Halle, December 10, 2009

Balmann/Kellermann/Larsen/Sandri/Schade

### Introduction



- · Economies of scale often not exploited in Western agriculture
  - dominance and persistence of small family farms (Balmann 1994, 1995)
  - "too little" participation in collaborative arrangements that allow small firms to exploit economies of size (Aurbacher, Lippert, Dabbert 2007)

### Introduction



1

- Explanations for unexploited increasing returns
  - transaction costs limit, e.g., access to financial resources
  - naïve expectations prevents inefficient farms from exit
  - insufficient market mechanisms
    do not ensure appropriate re-allocation to more efficient structures
  - coordination failures among heterogeneous actors
- · This study focuses on the last two explanations
  - Balmann (1994,1995)
    - · establishing large arable farms can require price differentiation on land market
  - Aurbacher, Lippert, Dabbert (2007)
    - establishing machinery cooperation can require price differentiation for  $\mathsf{use}_3$

### Introduction

p



2

 The problem of increasing returns / economies of scale neoclassical market
 increasing returns market
 P I



exploitation of increasing returns often requires price differentiation!
 specific problem: private information of suppliers!

### Objective



- Question
  - Can the coordination and allocation problem be solved?
  - Application to the land market problem of Balmann (1995)
- Hypothesis
  - Auctions enable price differentiation
  - Auctions create incentives to reveal private information
- Approach
  - Laboratory experiments with students
  - Agent-based model with computationally intelligent agents using genetic algorithms provides normative benchmark solution (game theoretic equilibrium)

### Outline



6

- Description of land market example
- Experimental setting
- Benchmark case simulations with ABM/GA
- Experiment results
- · Conclusions and further research

### A land market example



5

Imagine the following situation

- A profit maximizing entrepreneur characterized by increasing returns wants to "take over" a certain number of smaller farms in a certain region
- · The existing small farmers are assumed to
  - be equally large in terms of land
  - have land with identical physical properties
  - have heterogeneous reservation prices (opportunity costs) for their land
  - have private information on their reservation prices



### A land market example

700

600

500

200

100

ſ

**b** 400 **J** 300

Potential welfare gain = A - B

mD

5

Land units

6

7



marginal economic rent,

average economic rent,

opportunity cost, farmers

average opportunity cost,

entreprenour

entreprenour

farmers





#### • Four scenarios (treatments):

- two group sizes: "small" (7 players) and "large" (14 players)

|                   |                         | Group size          |                      |  |
|-------------------|-------------------------|---------------------|----------------------|--|
|                   |                         | "Small" (7 players) | "Large" (14 players) |  |
| Potential welfare | "Tight"<br>(A-B=352)    | Treatment 1         | Treatment 2          |  |
| gain              | "Generous"<br>(A-B=704) | Treatment 3         | Treatment 4          |  |

10

### Experimental setting



11

9

Example of parameters (treatment 1: 7 players, tight room for negotiations)\*\*

|        |                         | Assumptions                          |                                |                               |                              |                              |
|--------|-------------------------|--------------------------------------|--------------------------------|-------------------------------|------------------------------|------------------------------|
|        |                         | Players                              |                                | Entrepreneur                  |                              |                              |
| Player | Sum of<br>land<br>units | Opportunity<br>cost of land<br>unit* | Average<br>opportunity<br>cost | Total value of<br>production* | Marginal value of production | Average value of production* |
| 1      | 1                       | 80                                   | 80                             | 12                            | 12                           | 12                           |
| 2      | 2                       | 160                                  | 120                            | 52                            | 40                           | 26                           |
| 3      | 3                       | 240                                  | 160                            | 232                           | 180                          | 77.3                         |
| 4      | 4                       | 320                                  | 200                            | 732                           | 500                          | 183                          |
| 5      | 5                       | 400                                  | 240                            | 1382                          | 650                          | 276.4                        |
| 6      | 6                       | 480                                  | 280                            | 2022                          | 640                          | 337                          |
| 7      | 7                       | 560                                  | 320                            | 2592                          | 570                          | 370.3                        |

\* Information known to the players

### Experimental setting



- Each experiment consists of 40 repetitions of each treatment ٠
- The entrepreneur is computerized and profit-maximising ٠
- In each repetition (round), the opportunity costs are randomly assigned to the participants
- Each player is assumed to have the following information ٠
  - His/her own opportunity costs
  - The distribution of the other players' opportunity costs
  - The entrepreneur's production function (and average production)
  - > Players are well informed!

<sup>\*\*</sup> Total potential welfare gain

<sup>=</sup> Total value of production (at 7 players) - sum of players opportunity costs = 2592 - 2240 = 352

### Experimental setting



- After each round, each player receives feedback on •
  - the number of transactions occured
  - acceptance or declines the players own ask
- The players are not informed about the other players' asks and payoffs (private information)
- The subject pool consisted of 98 participants ٠ (28 in treatments 2, 3 and 4; 14 in treatment 1)
- the own payoff in the round

What should we expect?



 Benchmark case - game theoretic equilibrium for bidding behavior - agent-based simulation with genetic algorithm learning 13 Benchmark case simulations with agent-based model Research Unit SiAd



14

Steps to undertake in a GA

- provide genetic information:
- encoding a strategy/solution as a string of genes
- define population of N genomes for each agent ٠ with a certain opportunity costs
- fitness evaluation by repeated simulations of the model
- apply genetic operators: selection, crossover, mutation

#### Benchmark case simulations with agent-based model

Experiment by using an agent-based model

- entrepreneur and small farmers are modeled as agents
  - entrepreneur behaves like in the laboratory
  - small farmers "learn" optimal individual bids for given opportunity costs by applying individually a genetic algorithm (GA), i.e. GA defines optimal bid
- entrepreneur and small farmers interact repeatedly on market
- model converges towards an equilibrium

#### Benchmark case simulations with agent-based model



SiAg

rent, entrepreneur 500 average economic rent, entrepreneur 400 opportunity cost, farmers 300 average opportunity 200 cost, farmers marginal ask 100 average ask 0 3 5 7 Land units Benchmark case simulations with agent-based model Research Unit SiAg Outcome of GA: treatment 3 350 300 marginal economic rent, entrepreneur 250 average economic rent, entrepreneur 200 opportunity costs, 150 farmers average opportunity 100 cost, farmers marginal ask 50

9

Land units

11

13

Benchmark case -

700

600

Price

Price

0

3

5

simulations with agent-based model

Outcome of GA: treatment 1

SiAg Research Unit SiAg

marginal economic

SiAg

average ask

# Benchmark case – simulations with agent-based model



#### Outcome of GA: treatment 4



# Benchmark case – simulations with agent-based model



The results from the genetic algorithms suggest:

Players add a value **c** to their reservation price (**top-up**) this can be found by solving the following optimization problem:

 $\max_{ask_{1,\dots,n},C} c$ 

subject to the constraints

$$ask_i = \min\{oc_i + c; p_{\max}\} \text{ and } \sum_i ask_i \le TV$$

where  $ask_i$  is the ask of player *i*,  $oc_i$  is the opportunity cost of player *i*,  $p_{max}$  is the maximum price accepted (the market price) and *TV* is the total net revenue if the entrepreneur can buy all land

### Experiment results



- Experiments were carried out in September and October 2009 with students
- · Some comments to the data
  - There are some exceptionally high/low asks
  - The subjects are not always acting rationally: in each session there is a number of cases with asks lower than the opportunity cost of player (varies between 0.4% - 8.9%)

### **Experiment** results



22

#### Distributions of number of accepted asks per round







24

### Experiment results



Average number of accepted asks by treatment

|                                   | Treatment                |                             |                           |                              |
|-----------------------------------|--------------------------|-----------------------------|---------------------------|------------------------------|
|                                   | 1                        | 2                           | 3                         | 4                            |
|                                   | 7 players, tight<br>room | 7 players, generous<br>room | 14 players, tight<br>room | 14 players,<br>generous room |
|                                   | (N=80)                   | (N=160)                     | (N=80)                    | (N=80)                       |
| Average #                         | 2.74                     | 3.67                        | 3.62                      | 7.08                         |
| accepted asks                     | (3.11)                   | (3.06)                      | (5.73)                    | (6.14)                       |
| (standard deviation)              |                          |                             |                           |                              |
| P-value, Mann-<br>Whitney U-test* | 0.054                    |                             | 0.0024                    |                              |

\* Tests whether the data comes from two different populations (the null hyphothesis is that the two samples are drawn from identical populations)

### **Experiment results**



25

#### • Findings (I)

- In general the share of accepted asks is surprisingly low!
  - + < 50 % in treatments with tight room for negotiation
  - +  $\,$  ~ 50 % in treatments with high room for negotiation
  - ➤ highly inefficient outcome!
- Smaller groups are (slightly) more successful!
- Rate of acceptance does not increase over time!
  - players do not learn to coordinate (even after 40 rounds)!

### **Experiment** results



### Share of accepted asks by treatment

|                                                    | Treatment                       |                                     |                                        |                                        |
|----------------------------------------------------|---------------------------------|-------------------------------------|----------------------------------------|----------------------------------------|
|                                                    | 1                               | 3                                   | 2                                      | 4                                      |
|                                                    | 7 players, tight room<br>(N=80) | 14 players, tight<br>room<br>(N=80) | 7 players, generous<br>room<br>(N=160) | 14 players,<br>generous room<br>(N=80) |
| Average share<br>accepted asks<br>(standard error) | 0.39<br>(0.41)                  | 0.26<br>(0.41)                      | 0.52<br>(0.44)                         | 0.51<br>(0.44)                         |
| P-value, Mann-<br>Whitney U-test                   | 0.74                            |                                     | 0.96                                   |                                        |

26

### Experiment results



Comparison with benchmark case - Treatment 1



>asks correlated with opportunity costs (holds for all experiments)

> in average far too high asks for low opportunity costs! (not just outliers!)

### Experiment results



#### Comparison with benchmark case - Treatment 2



In average too high asks for low and very high opportunity cost
 bidding more efficient as too high asks are more costly!

### Experiment results



29

#### Comparison with benchmark case - Treatment 4



➤in average far too high asks for lower and high opportunity costs! (not just outliers)

### Experiment results



#### Comparison with benchmark case – Treatment 3



> in average far too high asks for most opportunity cost levels! (not just outliers!)

### Experiment results



30

#### **Regression results**

|                  | Dependent variable: Ask  |           |            |               |
|------------------|--------------------------|-----------|------------|---------------|
|                  | 7 p                      | layers    | 14 players |               |
|                  | Tight room Generous room |           | Tight room | Generous room |
| Constant         | 160900***                | 167000*** | 60600***   | 89300***      |
|                  | (22000)                  | (15200)   | (6570)     | (19300)       |
| Opportunity cost | 0.72***                  | 0.82***   | 0.88***    | 0.96***       |
|                  | (0.061)                  | (0.042)   | (0.037)    | (0.11)        |
| R-square         | 0.20                     | 0.25      | 0.34       | 0.07          |

### Experiment results



#### **Regression results**

|                  | Dependent variable: Profit |          |            |               |
|------------------|----------------------------|----------|------------|---------------|
|                  | 7 players                  |          | 14 players |               |
|                  | Tight room Generous room   |          | Tight room | Generous room |
| Constant         | 51900***                   | 78100*** | 10600***   | 60400***      |
|                  | (7150)                     | (4190)   | (1410)     | (3150)        |
| Opportunity cost | -0.14***                   | -0.12*** | -0.035***  | -0.24***      |
|                  | (0.020)                    | (0.042)  | (0.037)    | (0.018)       |
| R-square         | 0.085                      | 0.012    | 0.0080     | 0.15          |

33

### Conclusions



- Auctions do not guarantee for Pareto optimal solutions!
  - Players do not reveal information although this is costly!
  - Players with low opportunity costs generally ask for "too much" (compared to the benchmark case)
  - When potential gain is larger, the number of accepted asks is higher, i.e., when too high asks are more costly
- · Experiments provide evidence for
  - market failures
  - cooperation deficits
  - as reasons for unexploitet increasing returns
- > Other coordination strategies are probably more successfuls

### Experiment results



#### • Findings (II)

- Individuals consider their opportunity costs
  - asks proportional to opportunity costs!
- Problem: top-ups too high! (most likely not just result of errors/trials!)
- ➢ Players are too greedy!
- > Players suffer from greed!
- > Probably "fairness problem"
  - i.e., players with lower opportunity costs expect equal price
- > Question: Are players playing some kind of "tit for tat"?
  - · in some treatments weak evidence that ask is lower if last asks successful

34

### Further research



- Deeper analysis of results
  - Comparing the individual strategies of the players (e.g. panel analysis)
  - Looking at the effects of learning
- · Conduct the experiments with individualized opportunity costs
- · Conduct the experiments with farmers instead of students
- · Conduct the experiments with other auction schemes
  - eventually spectrum auctions



## Thank you for your attention!

37