Location, Spatial Price Discrimination and their interdependencies

An explorative approach to spatial competition theory through simulation

Deutsche Forschungsgemeinschaft DFG

Marten Graubner

Theodor-Lieser-Str. 2 graubner@iamo.de

D-06120 Halle (Saale) www.iamo.de phone: fax: +49 345 2928320 +49 345 2928399

Outline

- 1. Motivation, Objectives
- 2. Theoretical background
- 3. Methodological approach
- 4. Results
- 5. Summary

Motivation

- Spatial competition
 - Location theory
 - Spatial price theory
- Models of location theory: price strategy fix
- Models of spatial price competition: location fix
- From an agricultural economics perspective: less is done on input markets

Objectives

- analyze spatial input markets with regard to pricing and location through simulation
- consider a general pricing rule
- contrast theory with the outcome of simulations
- identify the impact of critical assumptions

Literature

	Models incorporate: ^a					
Contribution	Lo	LP	Ol	2D	BE	El
Norman [1981]	_			_	_	_
Thisse and Vives [1988]	_	$\Box^{\mathrm{b,c}}$	_	_	_	
Espinosa [1992]	_		_	_	_	_
Zhang and Sexton [2001]	-	$\Box^{\mathrm{b,c}}$	_	_	_	
Hotelling [1929]		\Box^{b}	_	_		_
Lerner and Singer [1937]		\Box^{b}	_	_		_
Salop [1979]		\Box^{b}		_	_d	
Lederer and Hurter [1986]		_	_			_
Kats and Thisse [1993]		\Box^{c}	_	_	_d	_
Economides [1993]		\Box^{b}		_		
Tabuchi [1994]		\Box^{b}	_			_
Ansari et al. [1998]		\Box^{b}	_			_
Irmen and Thisse [1998]		\Box^{b}	_			_
Brenner [2005]		$\Box_{\rm P}$		_		_
This paper						

 $\blacksquare =$ yes, $\square =$ partial, - =no

- ^a Lo=Location, LP= linear price strategies, Ol= more than two firms, 2D= two dimensional space, BE=border effects, El=elasticity of demand or supply
- ^b Free on board pricing (fob)
- ^c Uniform delivered pricing (udp)
- ^d Circular market

Literature

	Models incorporate: ^a					
Contribution	Lo	LP	Ol	2D	BE	El
Norman [1981]	_			_	_	_
Thisse and Vives [1988]	_	$\Box^{\mathrm{b,c}}$	_	_	_	
Espinosa [1992]	_		_	_	_	_
Zhang and Sexton [2001]	-	$\Box^{\mathrm{b,c}}$	_	_	_	
Hotelling [1929]		$\Box_{\rm p}$	_	_		_
Lerner and Singer [1937]		\Box^{b}	_	_		_
Salop [1979]		\Box^{b}		_	_d	
Lederer and Hurter [1986]		_	_			_
Kats and Thisse [1993]		\Box^{c}	_	_	_d	_
Economides [1993]		\Box^{b}		_		
Tabuchi [1994]		\Box^{b}	_			_
Ansari et al. [1998]		\Box^{b}	_			_
Irmen and Thisse [1998]		\Box^{b}	_			_
Brenner [2005]		\Box^{b}		_		_
This paper						

 $\blacksquare =$ yes, $\square =$ partial, - =no

- ^a Lo=Location, LP= linear price strategies, Ol= more than two firms, 2D= two dimensional space, BE=border effects, El=elasticity of demand or supply
- ^b Free on board pricing (fob)
- ^c Uniform delivered pricing (udp)
- ^d Circular market

Spatial price theory

t... Transport cost

r... Distance to processors location R... Market Radius of the processor odp... Optimal dicriminatory pricing udp... Uniform delivered pricing fob... Free on board pricing

$$p(r) = m - \alpha tr$$

- Local price p(r):
 - Constant mill price *m* less a portion *α* of the transport costs *tr*
 - Γ= Γ (m, α) is the spatial price strategy of a firm

Methodology

- Agent-based Modeling (ABM)
 - interaction of many heterogeneous agents
 - explicit consideration of space

Genetic Algorithm (GA)

- heuristic search method for optimization
- utilized as internal decision model of agents

Simulation of pricelocation games

	Simulations				
Parameter	Duopsony	Oligopsony	Unbounded Space	Inelastic supply	
i	2	$3 \dots 6$	$2 \dots 6$	$2 \dots 6$	
j	400	400	400	400	
t	$0.0 \dots 5.0$	2.0	2.0	2.0	
arphi	1.0	1.0	1.0	1.0	
x,y	20	20	20	20	
v	1.0	1.0	1.0	1.0	
ω	1.0	1.0	1.0	0.0	
space	\mathbf{plane}	plane	torus	torus	

Duopsony

For each figure the number of games is n=12500.

Duopsony

For each figure the number of games is n=12500.

Simulation of pricelocation games

	Simulations				
Parameter	Duopsony	Oligopsony	Unbounded Space	Inelastic supply	
i	2	36	$2 \dots 6$	$2 \dots 6$	
j	400	400	400	400	
t	$0.0 \dots 5.0$	2.0	2.0	2.0	
φ	1.0	1.0	1.0	1.0	
x,y	20	20	20	20	
v	1.0	1.0	1.0	1.0	
ω	1.0	1.0	1.0	0.0	
space	$_{\rm plane}$	$_{\rm plane}$	torus	torus	

Oligopsony

n=7500

Oligopsony (i=3)

- the "top"-firm discriminates less than the "bottom " firms
- Market border may be closer to the location of the "top" firm, but there is a better adjustment to supply elasticity in the backyard

Simulation of pricelocation games

	Simulations				
Parameter	Duopsony	Oligopsony	Unbounded Space	Inelastic supply	
i	2	36	26	$2 \dots 6$	
j	400	400	400	400	
t	$0.0 \dots 5.0$	2.0	2.0	2.0	
φ	1.0	1.0	1.0	1.0	
x,y	20	20	20	20	
v	1.0	1.0	1.0	1.0	
ω	1.0	1.0	1.0	0.0	
space	$_{\rm plane}$	plane	torus	torus	

Unbounded space

n=7500

Simulation of pricelocation games

		Simulations				
Parameter	Duopsony	Oligopsony	Unbounded Space	Inelastic supply		
i	2	$3 \dots 6$	$2 \dots 6$	$2 \dots 6$		
j	400	400	400	400		
t	$0.0 \dots 5.0$	2.0	2.0	2.0		
φ	1.0	1.0	1.0	1.0		
x,y	20	20	20	20		
v	1.0	1.0	1.0	1.0		
ω	1.0	1.0	1.0	0.0		
space	$_{\rm plane}$	plane	torus	torus		

Perfectly inelastic supply

n=7500

Results

	Simulation ^a				
	Duopsony	Oligopsony	Unbounded space	Inelastic supply	
Variable:	transport costs	number of firms	number of firms	number of firms	
m	•		▼	▲	
α	A		▼	A	
β	•		A	•	
\overline{d}	A	•	•	•	

^a Du = duopsony, Ol = oligopsony, US = unbounded space, IS = (perfectly) inelastic supply, d
 a verage distance between all processors, ▼ = decreasing, ▲ = increasing, □

 = indeterminate

Results

	Simulation ^a				
	Duopsony	Oligopsony	Unbounded space	Inelastic supply	
Variable:	transport costs	number of firms	number of firms	number of firms	
m	•		▼	A	
α	A		•	A	
β	•		▲	•	
\overline{d}	A	•	•	•	

^a Du = duopsony, Ol = oligopsony, US = unbounded space, IS = (perfectly) inelastic supply, d
 a verage distance between all processors, ▼ = decreasing, ▲ = increasing, □

 = indeterminate

Results

	Simulation ^a					
	Duopsony	Oligopsony	Unbounded space	Inelastic supply		
Variable:	transport costs	number of firms	number of firms	number of firms		
m	•		▼	A		
α	A		•	A		
β	•		A	•		
\overline{d}	A	•	▼	•		

^a Du = duopsony, Ol = oligopsony, US = unbounded space, IS = (perfectly) inelastic supply, d
 a verage distance between all processors, ▼ = decreasing, ▲ = increasing, □

 = indeterminate

Summary

- First investigation of both: location and pricing in terms of a non-cooperative game
- Simulation enables to consider
 - two-dimensional markets
 - multi-firm competition
 - elastic supply functions
- Results considerably differ from prior studies, e.g.:
 - Minimum differentiation with low price discrimination
 - Deviation from regular location patterns
 - differentiation with respect to location and price discrimination
- General relation between spatial price discrimination and spatial differentiation of firms locations hinges on the model's specification

Thank you!

Questions? Questions? Yes! No! Maybe?