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Abstract
Faculty of Life Sciences

Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences

Master of Science

Local Governments in Climate Action: The Role of Temperature Shocks and
Weather-Related Disasters in Driving Global Covenant of Mayors Participation

by Lauren Henn

As climate change intensifies, cities face increasing risks from rising temperatures and
natural disasters. This may drive them to take action, such as joining trans-municipal
climate networks (TMNs) like the Global Covenant of Mayors for Climate and Energy
(GCoM). To empirically test this, the following analysis modeled the decision-making
process of 11,344 cities globally from 2008 to 2024 to join TMNs, by exploring the im-
pact of seasonal temperature anomalies, shocks, and weather-related disasters on GCoM
participation. The focus on the GCoM was justified by its status as the largest net-
work of its kind. The results revealed regional disparities, with European cities show-
ing a higher participation rate than others. Moreover, in Europe, long-term exposure to
warmer-than-average conditions and persistent meteorological disasters were associated
with increased GCoM participation, while sustained colder-than-average conditions dis-
couraged involvement. In contrast, non-European cities showed less consistent patterns.
That said, the findings were accompanied by some degree of uncertainty. Overall, the re-
sults contribute to understanding how local exposure to climate events influences cities’
engagement in climate networks, adding to the literature on urban climate action.
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Chapter 1

Introduction

The year 2023 has been reported as the warmest on record, with global temperatures
averaging 1.5°C above pre-industrial levels (Copernicus Climate Change Service, 2024;
World Meteorological Organization, 2024). Unlike isolated weather events that can be
attributed to natural variability, this rise corresponded with consistent shifts in historical
weather patterns that point toward anthropogenic climate change (Pörtner et al., 2022).
However, climate change entails more than rising temperatures. It is also reflected in
rising sea levels, changing precipitation patterns (leading to both excessive and reduced
rainfall) and an increase in climate shocks, i.e. weather events consisting of extreme
deviations from normal conditions, such as temperature spikes, or the occurrence of
natural disasters like heat waves, droughts, floods and storms (Collins et al., 2019;
Pörtner et al., 2022). These events, which have been increasing in intensity and frequency
in recent years, already pose complex challenges to both the environment and humans
and are only expected to escalate further in the future (Field et al., 2012).

This is especially alarming for cities. For once, the effects of rising temperatures are
exacerbated in urban areas because the built environments absorb and re-emit solar
heat more than natural landscapes (MIT Climate Portal, 2021). Additionally, the threats
associated with sea-level rise primarily affect coastal cities, where 86 percent of the 820
million people at risk from it live (Coalition for Urban Transitions, 2019; Ruiz-Campillo
et al., 2022). Moreover, severe weather events such as droughts, floods, storms, and
heatwaves place significant strain on residents, water resources, and infrastructures
(World Bank, 2010) and, due to high population densities, have an amplified impact on
a larger number of people (Dawson, 2017).
At the same time, cities are not only victims but also significant contributors to climate
change. This is mainly due to their substantial dependence on fossil fuels, with them be-
ing responsible for about 70 percent of global resource consumption and anthropogenic
greenhouse gas emissions (UN-Habitat, 2016). Moreover, considering the projected
growth in urban population, an increase in the demand for larger or additional cities in
the future may worsen climate change impacts as resources will be exhausted further
(Rosenzweig et al., 2018).
Despite these considerations, urban areas are also uniquely positioned to lead the way in
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combating climate change. Their economic and political importance and, in many cases,
status as innovation and technology hubs allow them to implement effective climate
change mitigation and adaptation strategies. Furthermore, due to their influential role,
the actions taken by cities can spillover and potentially catalyze nationwide environ-
mental initiatives (Castán Broto, 2017; Heidrich et al., 2016; Nguyen Long and Krause,
2021; Reckien et al., 2018).

Local governments have already started to capitalize on this unique position by adopting
various strategies. These include improving their infrastructure, transportation, and
waste systems, promoting renewable energy use, and participating in trans-municipal
climate networks (Castán Broto, 2017; Heidrich et al., 2016; Reckien et al., 2015, 2018).
The latter especially plays a role in promoting resource and knowledge sharing among
cities while also helping to develop and implement strategies to mitigate and adapt to
climate change’s impacts (Heidrich et al., 2016; Nguyen Long and Krause, 2021; Reckien
et al., 2015, 2018). Currently, the most prominent network, the Global Covenant of
Mayors for Climate and Energy (GCoM), unites over 13,000 local governments from 144
countries, collectively representing more than one billion people (Global Covenant of
Mayors for Climate & Energy, n.d.b). That said, while participation in trans-municipal
climate networks, such as the GCoM, is widespread, certain regions demonstrate more
engagement than others (Bansard et al., 2017). These differences may be attributed to
a combination of socio-economic and governance factors, along with other city-specific
characteristics such as its vulnerability to climate change. Applying the definition given
by the Intergovernmental Panel on Climate Change (McCarthy et al., 2001), a city’s vul-
nerability would be shaped by its exposure to extreme weather events, climate shocks,
and changing climate patterns; its inherent sensitivities (e.g., age or health-related factors
in the population); and its adaptive capacities (i.e., the available resources to respond
to climate threats). Depending on the local composition of these three factors, some
cities face higher vulnerability to climate change than others. As a result, those may feel
more urgency to take climate action, potentially prompting them to engage in climate
networks that offer solutions to address their vulnerabilities.

The relationship between subnational vulnerability and climate action has already been
central to much empirical research. On one hand, studies within the United States
found that highly exposed cities were more engaged in climate action (Gabbe et al.,
2024; Hazlett and Mildenberger, 2020; Ji and Darnall, 2022; Zahran et al., 2008a). On the
other hand, findings at the European scale have been more nuanced. While research has
shown that exposure reinforced green voter behavior at the subnational level (Hoffmann
et al., 2022), other studies have indicated that higher vulnerability can hinder the
adoption of urban climate mitigation and adaptation strategies (Reckien et al., 2015). At
the global level, several studies have highlighted a complex relationship between a local
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government’s economic condition, its institutional quality, and its responses to climate
threats (Nohrstedt et al., 2022), while other findings revealed no consistent link between
natural disasters, temperature shocks, sea-level rise, and climate action (Brennan et al.,
2022; Rowan, 2022).

Thus, while a substantial body of research has explored why cities engage in climate
action, mainly focusing on the role of local-level vulnerability, the mixed findings
demonstrate that the relationship is more complex than assumed. Moreover, of the
reviewed empirical studies, only two (Zahran et al., 2008a,b) focused on trans-municipal
climate networks as a focal point for climate action, emphasizing that they remain an
area of investigation. Additionally, as climate shocks intensified in frequency, and as
climatic deviations became more significant in scale, local governments may view these
as direct consequences of climate change, prompting them to act. These considerations
resulted in the central research question of this thesis, which asked: How does exposure
to climate shocks, as evidenced by significant temperature deviations, and weather-
related disasters, influence a city’s decision to join trans-municipal climate networks?

Building upon the existing empirical literature on urban climate action and leveraging on
the data at hand, this question was addressed by modelling the decision-making process
of 11,344 cities worldwide to participate in the most prominent global climate network,
the GCoM, across hot (April to September) and cold (October to March) seasons from
2008 to 2024. The exclusive focus on the GCoM was justified by its status as the largest
trans-municipal climate network (United Nations Framework Convention on Climate
Change, 2025). Additionally, the capacity to model city adherence on such a large scale
was made possible by utilizing the Joint Research Centre’s Global Human Settlement –
Urban Centre Database (GHS-UCDB) (Florczyk et al., 2019).
The main empirical task involved comparing cities experiencing significant exposure to
climate events to those experiencing milder or no considerable exposure to determine
if this influenced their decisions to engage in the network. Exposure to climate change
was measured by deviations from historical temperature patterns and the occurrence of
weather-related natural disasters. Temperature estimates included the total respective
seasonal (hot or cold) anomaly based on the 1981-2010 baseline, considering crude,
positive, and negative anomalies. These measures were derived using temperature
data from the Global Historical Climatology Network (GHCN), provided by the NASA
Goddard Institute for Space Studies (GISTEMP Team, 2024), and data on the Universal
Thermal Climate Index (UTCI), provided by the Copernicus Climate Change Service
(Di Napoli et al., 2021). Additionally, the total number of days within each season
classified as a shock was included, defined as the count of daily UTCI values exceeding
the 95th percentile or falling below the 5th percentile, based on a 30-day rolling window
from 1981 to 2010. The analysis also considered the frequency of heat and cold spells,
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identified as periods of at least three consecutive days of positive or negative temper-
ature shocks, respectively. Furthermore, the effect of natural disasters was assessed by
including both the occurrence of weather-related disasters and the number of associated
deaths for overall and disaggregated disasters (i.e., hydrological, meteorological, and
climatological events). This was made possible by leveraging on the Emergency Events
Database (EM-DAT) (Centre for Research on the Epidemiology of Disasters, 2024). Lastly,
lagged variables (up to one lag) and lagging means over six and twelve seasons were
incorporated for all exposure variables to capture immediate, delayed, and medium- to
long-term effects. These exposure measures were then incorporated into discrete-time
survival models to evaluate their impact on the hazard of a city joining the GCoM at
any given season during the observation period, conditional on it not having joined
before. The estimations were conducted separately for European cities, and then for
all remaining cities, due to the GCoMs origins in Europe. This framework further
included covariates proxying city-level socioeconomic, and other characteristics, which
demonstrated strong explanatory power in urban climate action studies. Finally, to
strengthen the robustness of the findings, the empirical models were extended to include
inverse probability weights, to adjust for potential confounding in the estimated effects
of exposure variables.
It should be noted that Geographic Information System (GIS) analytical techniques
played a crucial role in this analysis since they enabled the aggregation of exposure
measures and other variables within urban spatial boundaries. It should further be noted
that the sole focus on the exposure dimension within the vulnerability concept was
driven by the ease of computing measurable metrics, such as the frequency and intensity
of climate-related events and deviations in delineated geographic areas, compared to
other metrics reflecting subnational sensitivity and adaptive capacity.

The primary goal of this research was to investigate the factors that drive city participa-
tion in trans-municipal climate networks, focusing on how exposure to climate change
influences their decision. A secondary goal was to expand the existing body of research
in this field by addressing gaps that often overlook local climate variations over extended
periods and across a large number of local governments; to date, no research has focused
on such a wide-ranging scope. That said, the findings of the analysis presented regional
disparities, with European cities behaving differently than others. Long-term exposure
to meteorological events and warmer-than-average conditions encouraged GCoM
participation in Europe, while colder-than-average conditions discouraged involvement.
Moreover, the findings outside of the European context revealed less consistent patterns,
with short-term temperature deviations towards warming having an effect, while no
clear trends could be observed from natural disasters. Colder-than-average conditions
were also found to have an influence in non-European cities; however, this conclusion
was accompanied by a significant degree of uncertainty.
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The thesis is organized as follows: Chapter 2 presents a review of empirical research
on the relationship between climate change vulnerability and subnational climate action.
It also introduces the Global Covenant of Mayors for Climate and Energy (GCoM), the
leading trans-municipal climate network and the focus of the analysis. Chapter 3 outlines
the hypotheses to be tested and describes the data and empirical strategy used for this
purpose. Chapter 4 then provides a descriptive data analysis and presents the results,
including findings from the discrete-time survival estimation and the adjusted analysis
incorporating inverse probability weights. In Chapter 5, these results and implications
for future research are discussed, before concluding remarks are made in Chapter 6.
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Chapter 2

Research Context

2.1 Current State of Empirical Research on Urban Vulnerability
and Climate Action

Vulnerability to climate change is most prominently defined by the Intergovernmental
Panel on Climate Change (IPCC) (McCarthy et al., 2001) as “The degree to which a system
is susceptible to, or unable to cope with, adverse effects of climate change, including climate
variability and extremes. Vulnerability is a function of the character, magnitude, and rate
of climate variation to which a system is exposed, its sensitivity, and its adaptive capacity”
(p. 6). Hence, the concept of vulnerability, as described by the IPCC, includes not
only the potential for negative impacts from climate change on a system but also its
capacity to manage these challenges. Building on this framework, the subsequent
analysis primarily focused on city-level exposure to climate shocks instead of other
aspects of the vulnerability concept. This decision was mainly driven by the fact that
subnational metrics for exposure, such as the frequency and intensity of climate events
and variations, were easier to quantify compared to localized indicators for sensitivity
and adaptive capacity. For instance, subnational spatial data, with a global coverage, on
metrics such as temperature and natural disaster events is more consistently available
than data on adaptive capacity (e.g., on infrastructure and institutional quality, education
of the population), or sensitivity (e.g., access to healthcare, the age distribution of the
population, and the quality of the built environment).
Thus, focusing on exposure, the concept entails understanding the frequency, intensity,
and historical persistence of climatic challenges a system faces, encompassing both
long-term changes and extreme events. These climatic challenges may include rising
temperatures, shifting precipitation patterns, sea-level rise, and extreme weather events
(Jurgilevich et al., 2017). Moreover, just as climates vary across different geographical
regions, so do exposure levels, with recent studies having further highlighted signif-
icant increases affecting some regions more than others (Organisation for Economic
Co-operation and Development, 2020; Pörtner et al., 2022; Wei et al., 2024). Hence, areas
experiencing higher levels and more frequent exposure are likely to benefit most from
climate action. This is particularly relevant at the subnational level, where the impacts
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of climate events can be more pronounced compared to national levels (Giordono et al.,
2018; Rowan, 2022). These considerations have already been the focus of empirical
research, which has, in some cases, demonstrated a connection between urban climate
action and local exposure to climate change.

For one, research has indicated a link between exposure to weather-related events and
pro-climate political preferences. That said, the persistence of the effects varied based
on spatial and temporal proximity, underlying political orientation, and economic con-
ditions. For instance, Hazlett and Mildenberger (2020) found that people living within
five kilometers of recent wildfires in California significantly increased their support for
climate-related reforms. This effect, however, disappeared almost entirely beyond a
15-kilometer radius and was primarily observed in Democratic-leaning areas. Adding
to these findings Baccini and Leemann (2021) observed a 20 percent increase in support
for pro-climate policies immediately after flood occurrences in Switzerland, especially in
municipalities more conscious of climate change issues. However, they noted that this
effect diminished over time, with political behaviors between affected and unaffected
areas realigning ten months after the disaster. Moreover, rises in temperature anomalies
and the occurrence of heatwaves and droughts were shown to significantly increase
subnational Green Party votes in European Parliament elections (Hoffmann et al.,
2022). However, these effects varied across climatic regions, with positive temperature
anomalies and heat episodes having a more pronounced impact in temperate and colder
climates. At the same time, better local economic conditions were also identified to
amplify their effect.

Focusing on climate networks, Zahran, Brody, Vedlitz, Grover and Miller (2008a) found
that, on the one hand, counties in the United States facing more significant exposure
to environmental risks were more likely to commit to the Local Governments for Sus-
tainability’s (ICLEI) Cities for Climate Protection (CCP) campaign. Specifically, counties
with histories of extreme weather events that led to fatalities, significant projected
temperature increases, and at risk of coastal flooding were more inclined to participate.
Conversely, those with a higher share of employment in carbon-intensive industries
were less likely to join, pointing toward concerns over job losses leading to political
resistance against climate policies. Furthermore, nearly all counties engaged in the CCP
were shown to rank high in both vulnerability and socioeconomic capacity, indicating
that the ability to take climate action depended on available local resources, governance,
and the population’s education. On the other hand, when the authors conducted a
similar study at the more precise Metropolitan Statistical Area level, they no longer
identified that the areas most at risk from climate change impacts (assessed through
coastal proximity, extreme weather events, ecosystem sensitivity, positive precipitation
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anomaly) showed significant motivation to adopt the CCP campaign, while the impor-
tance of high socioeconomic capacity remained (Zahran et al., 2008b). Thus, exposure
alone may not be enough to drive climate action in some cases, with underlying factors
in terms of the socio-economic capacities, and available resources being primary drivers.

Shifting the focus to adopting subnational climate planning, some research focusing
on the United States has demonstrated a connection to climate risks. For once, Gabbe,
Pierce, Petermann and Marecek (2024) found that Californian cities facing more pro-
jected extreme heat days were significantly more likely to adopt urban heat strategies.
However, these projections did not influence broader climate adaptation planning, indi-
cating that effective action required a direct link between the type of climate exposure
and the specific strategy. Similarly, Ji and Darnall (2022) observed that not all types of
climate risks influenced sustainability planning in the same manner in municipalities
in the United States. Although overall disaster risk was found to influence the range
of environmental issues covered in sustainability strategies, when disaggregating risks,
only higher winter storm and geological hazard risks were linked to local governments’
strategies. In contrast, no connection was found for water-related hazards. Furthermore,
at the global level, local-level affluence was found to influence how cities responded
to disasters. For instance, Nohrstedt, Hileman, Mazzoleni et al. (2022) observed that
cities reporting to the Carbon Disclosure Project did implement adaptation measures in
response to disasters in their regions. However, this only occurred in cities with high
political stability. Moreover, economic losses due to disasters influenced actions, but
only when underlying economic conditions were favorable. Conversely, the frequency
of disaster events, the affected population, and the fatalities generally had no significant
impact on adaptation measures.
Thus, these findings suggested that climate risks influence climate planning. However,
this was found to be not only shaped by the type of risk but also by a city’s underlying
economic and political conditions, with wealthier and more politically stable cities being
more inclined to translate climate events into action.

In contrast, some research even established a negative correlation between a city’s
exposure to climate threats and climate action, specifically considering the adoption
of climate action plans. For instance, Reckien, Flacke, Olazabal and Heidrich (2015)
found that for European cities, warmer summers, coastal proximity, and projected
climate impacts acted as hurdles for adaptation and mitigation planning, particularly
in Southern Europe. The authors linked this finding to limited governance capacity
and economic constraints, as cities at risk often lacked resources to implement effective
action. Moreover, the Mediterranean region, which is highly vulnerable and exposed
to climate change, has been shown to struggle with implementing effective action
(Ruiz-Campillo et al., 2022; Salvia et al., 2021a).
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Meanwhile, other research has demonstrated no significant link between exposure to
climate change and climate action. Gurney, Meng, Rumschlag and Hamlet (2022) found
that economic losses and affected populations from extreme weather events did not
drive adaptation action across 88 cities in the United States. Moreover, findings at the
global level indicated that neither temperature shocks nor natural disasters (immediate
and over time) led to reforms in climate mitigation policies across national and subna-
tional levels. This finding remained robust when accounting for differences between
democracies and autocracies or between wealthier and poorer countries (Rowan, 2022).
Similarly Brennan et al.’s 2022 study at the global level observed that cities at risk
from sea-level rise initially had higher odds of having adaptation and mitigation plans.
However, after adjusting for confounders, the effect disappeared, and national income
emerged as the key driver.

Thus, the empirical literature presented mixed findings. While some studies indicated
that cities exposed to climate threats respond proactively (Baccini and Leemann, 2021;
Gabbe et al., 2024; Hazlett and Mildenberger, 2020; Hoffmann et al., 2022; Ji and Darnall,
2022; Zahran et al., 2008a), others showed that this does not always translate into action
(Brennan et al., 2022; Gurney et al., 2022; Reckien et al., 2015; Rowan, 2022; Ruiz-Campillo
et al., 2022; Salvia et al., 2021a). Moreover, underlying political, socio-economic, and gov-
ernance structures were found to significantly influence how cities responded to climate
threats (Hazlett and Mildenberger, 2020; Hoffmann et al., 2022; Nohrstedt et al., 2022;
Zahran et al., 2008a,b). That said, other research pointed to no moderation effects from
city-level affluence (Rowan, 2022). Additionally, the impact of climate shocks on climate
action were shown to often be temporary and geographically limited, with responses di-
minishing over time and space (Baccini and Leemann, 2021; Hazlett and Mildenberger,
2020). Whereas climate action was also found to be depended on the type of climate
threat, with some threats having a more pronounced effect than others (Gabbe et al.,
2024; Ji and Darnall, 2022).

2.2 The Global Covenant of Mayors for Climate and Energy

The previous section provided a summary of the stance of the existing academic litera-
ture on how exposure to climate change may facilitate or hinder urban climate action.
This subsection now provides a brief overview on one of the forms urban climate actions
may take: Trans-municipal climate networks (TMNs), specifically focusing on the Global
Covenant of Mayors for Climate and Energy (GCoM).

Transnational Municipal climate networks (TMNs) emerged in the 1990s, with the
initiation of the Local Governments for Sustainability (ICLEI) (formerly the International
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Council for Local Environmental Initiatives) (Nguyen Long and Krause, 2021). They
are characterized as networks of local governments united by a common climate goal
and three distinct features: voluntary membership, which allows members to join or
leave without repercussions; non-hierarchical organizational structures, which facilitate
equitable participation and shared governance among members; and a commitment
from members to follow the network’s policy decisions (Kern and Bulkeley, 2009;
Nguyen Long and Krause, 2021). Moreover, they emphasize on city collaboration across
geographic, developmental, and political boundaries with the goal to share knowledge
and resources, enabling local climate action, especially when higher authorities or NGOs
failed to support (Picavet et al., 2023).

The subsequent analysis focused on the factors that drive cities to join and participate in
these networks. However, rather than examining a multitude of climate networks, it cen-
tered on the Global Covenant of Mayors for Climate and Energy (GCoM). While several
other prominent networks exist, such as the ICLEI, C40 Cities, and the Climate Ambition
Alliance, none come close to the global reach and scale of the GCoM (United Nations
Framework Convention on Climate Change, 2025), which unites over 13,000 member
cities from 144 countries, representing over one billion people (Global Covenant of May-
ors for Climate & Energy, n.d.b).
The GCoM was founded in 2016 by the merger of the Covenant of Mayors of the Eu-
ropean Union and the UN Compact of Mayors (European Commission, 2016). The
Covenant of Mayors was originally initiated by the European Commission in 2008 with
the goal of uniting European cities to meet the EU’s climate and energy targets. It oper-
ated through a bottom-up approach, which enabled local governments to act indepen-
dently of national governments (Melica et al., 2022; Reckien et al., 2018; Ruiz-Campillo
et al., 2022). Member cities were urged to reduce their greenhouse gas emissions by at
least 20 percent, increase energy efficiency by 20 percent, achieve a 20 percent share of re-
newable energy sources by 2020, and implement Sustainable Energy and Climate Action
Plans (Pablo Romero et al., 2015; Reckien et al., 2018; Ruiz-Campillo et al., 2022).
In 2014, the UN Compact of Mayors followed, with the objective to unite cities beyond
Europe to commit to reducing their greenhouse gas emissions. The Compact focused
on accountability and transparency, requiring cities to commit to reducing emissions by
tracking and reporting their progress through publicly available platforms (Reckien et al.,
2018).
In June 2016, the merger of these two networks led to the creation of the GCoM, with the
intention to combine the EU Covenant’s bottom-up approach with the UN Compact’s
emphasis on transparency and accountability (European Commission, 2016). Cities that
committed to the GCoM aim to reduce their emissions by 40 percent by 2030, with more
significant reductions planned for 2050 (Melica et al., 2022). In terms of aligning with
their goals, the reports showed that as of 2021, they have already saved over 2.3 billion
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metric tons of CO2 (Global Covenant of Mayors for Climate & Energy, 2021). Moreover,
EU-27 signatories exceeded their 2020 targets by achieving a 25.3 percent reduction from
2005 levels, which surpassed the expected 22.7 percent (Melica et al., 2022). Studies fur-
ther suggested that GCoM cities were on track to align with the 1.5°C global warming
pathway (Hsu et al., 2020; Kona et al., 2021). Moreover, membership has been found to
encourage cities to develop climate action plans that address mitigation and adaptation
at the European level (Reckien et al., 2015, 2018; Salvia et al., 2021b).
While this sounds promising, some researchers have argued that cities may join the
GCoM only to enhance their reputation without being fully committed to the network’s
goals (Osofsky, 2015). Additionally, concerns emerged that climate networks may not
provide inclusive climate agendas since participation tends to be dominated by cities in
more economically developed regions (Osofsky, 2015). Finally, ensuring accountability
within the network and standardized reporting of progress also remains an issue (Gesing,
2018; Hsu et al., 2020). Nonetheless, in the following analysis, the focus did not linger on
the overall effectiveness of the GCoM. Despite these critiques, membership itself can be
seen as a proactive step toward climate action, demonstrating at the least a willingness
to address climate change issues.
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Chapter 3

Empirical Strategy

3.1 Resulting Hypotheses

The research presented in section 2.1 suggested that while not the sole factor and not
universal in all cases, a local government’s decision to engage in climate action can be
influenced by its exposure to climate events. For instance, extreme weather, changing
temperatures, and environmental risks have been observed to increase public support
for climate policies and Green parties, or make local governments more likely to adopt
climate initiatives and implement sustainability strategies (Baccini and Leemann, 2021;
Gabbe et al., 2024; Hazlett and Mildenberger, 2020; Hoffmann et al., 2022; Ji and Darnall,
2022). Additionally, trans-municipal climate networks like the GCoM aim to support
cities in coordinating mitigation and adaptation efforts (Picavet et al., 2023; Reckien
et al., 2018), providing another important avenue for climate action. As climate events
have grown more frequent and intense in recent years, with cities being affected the
most (Dawson, 2017; Field et al., 2012; Pörtner et al., 2022), temperature shifts and
disasters may serve as tangible, omnipresent reminders of their vulnerability to climate
change. This raised the question of whether cities might also turn to trans-municipal
climate networks to secure resources, share knowledge, and strengthen their climate
governance in response to climate threats. Thus, to assess this question, the following
analysis examined the relationship between climate exposure and network participation
by testing these hypotheses:

H1-A: Cities are more likely to join the GCoM when confronted with a temperature
shock.
H1-B: Cities are more likely to join the GCoM when confronted with a weather-related
natural disaster.

That said, it should further be considered that while climate shocks may trigger action,
cities may also initially dismiss isolated events as natural variability or one-time external
shocks. Consequently, repeated exposure to climate events may more effectively rein-
force the connection to shifting climate patterns. As a result, cities facing more frequent
climate threats may become increasingly motivated to engage in climate action and seek
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support through trans-municipal climate networks, such as the GCoM. Based on these
considerations, the following hypotheses are proposed:

H2-A: Cities are more likely to join the GCoM when confronted with prolonged changing
temperature patterns.
H2-B: Cities are more likely to join the GCoM when confronted with repeated weather-
related natural disasters.

The following analysis explored these relationships by examining both immediate shocks
and long-term climatic patterns. As underlying conditions have also been shown in the
literature to play a role in shaping subnational climate action, these have further been
controlled for in the analysis.

3.2 Data Selection and Description

The measures used to quantitively test the hypotheses discussed are presented following
this section. Summary statistics of the incorporated variables are further provided in
Appendix B.

First, to establish a consistent city dataset for the analysis, the Global Human Settlement-
Urban Centre Database (GHS-UCDB), provided by the European Commission’s Joint
Research Centre, served as the foundation (Florczyk et al., 2019). This database includes
GIS boundaries for 13,135 urban centers as of 2015, each detailed with precise informa-
tion on location and dimension, alongside a variety of geographical, socio-economic,
and environmental variables. Urban centres within this database were defined by the
authors as “high-density clusters of contiguous grid cells of 1 km2 with a density of at least
1500 inhabitants per km2 and a minimum population of 50000” (p. 6) (Poelman and Dijkstra,
2014), i.e. were characterized by high population figures and density, and significant
built-up area. For the purposes of this analysis, 11,344 cities were selected from the
original database. Cities were excluded if they had missing urban names, had substantial
data gaps in explanatory variables, faced uncertainties in matching with the outcome
variable, or belonged to countries without any GCoM members. The latter was necessary
since the subsequent analysis included country-fixed effects, which would then fully
absorb their variation. The selected cities spanned a wide geographical distribution,
including 2,273 in Africa, 6,892 in Asia, 1,006 in Europe, 771 in Latin America and the
Caribbean, 323 in North America, and 79 in Oceania, which allowed for the examination
of the research question from a global perspective.

At the beginning of the analysis, each urban centre within the GHS-UCDB was assigned
to having a GCoM membership, if applicable. The matching process involved geocoded
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data from the GCoM’s website (Global Covenant of Mayors for Climate & Energy, n.d.a),
although this presented challenges due to missing or incorrect spatial information (e.g.,
Freiburg im Breisgau having coordinates that put it 500 km off). A two-step matching
process was therefore applied to address these issues. First, a spatial join was conducted
between the GHS-UCDB boundaries and the GCoM shapefile. To ensure consistency,
the urban names from the matches within the GCoM dataset were compared to those in
the GHS-UCDB. For this purpose, the names were standardized by converting them to
lowercase and removing accents and punctuation. Afterward, the results were manually
verified before being deemed safe matches. Secondly, a reverse matching process was
applied to further address errors in the spatial information within the GCoM dataset.
This entailed pairing unmatched GHS-UCDB cities from the first matching process with
the GCoM data, based on urban names and country codes, before spatially filtering
them. The latter was done by excluding cities matched previously by name if they had
a location mismatch exceeding 20 km from the urban centre boundary to the GCoM
coordinate. Cities successfully matched by both name and location were then added
to the safe matches, while those meeting only one criterion were considered uncertain
and removed from the analysis (338 cities). It needs to be noted that some GCoM cities
had multiple matches within the GHS-UCDB, as certain members were districts rather
than whole cities (e.g., Dhaka North and Dhaka South). In such instances, only the
earliest match in terms of timing was retained. This processing resulted in 1,126 GCoM
members within the GHS-UCDB sample (approximately 10 percent), which had joined
from its initiation as the EU Covenant of Mayors in 2008 to March 2024, corresponding to
a 0.53 percentage seasonal probability for all cities to join the GCoM. For the subsequent
analysis, the data was structured as a panel data frame, segmented into bi-seasonal
periods (hot: from March to September; and cold: from October to April) from 2008 to
2024. The event of joining the GCoM was represented as a binary indicator, coded as “1”
if an urban centre joined during the respective season and “0” if it did not.

Moreover, since the analysis focused on exposure to climate change, including among
others temperature shocks, data on temperature readings served as a natural proxy.
However, to distinguish natural variability from long-term climate trends, the analysis
focused on deviations from historical climate patterns using anomaly measures. A
positive anomaly would indicate temperatures above the baseline average, reflecting
warmer conditions, while a negative anomaly would mean colder temperatures relative
to the baseline. To this end, data from the Global Historical Climatology Network
Version 4 (GHCNv4), which integrates information from over 25,000 weather stations
and provided by the Goddard Institute for Space Studies Surface Temperature Analysis
(GISTEMP Team, 2024; Lenssen et al., 2024) was included. The GHCN temperature
anomaly data was calculated as the average deviation (degrees Celsius) from a baseline
over a given reference period. The baseline period was set from 1981 to 2010 and was
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chosen to align closely with the observation period so that perceived climatic differences
are within a timeframe still relevant to current city populations, whereas the reference
period spanned the given season in the observation period. Anomalies were computed
separately for the hot and cold seasons to account for seasonal differences. The hot
season spanned from April to September, while the cold season spanned from October
to March of the following year. GHCN temperature anomalies were then joined with
the GHS-UCDB by calculating mean temperature anomalies within each city boundary.
Furthermore, Hoffmann, Muttarak, Peisker et al. (2022) highlighted the different implica-
tions coming from positive and negative temperature anomalies. While climate change
is often associated with rising temperatures and prolonged heatwaves, it also intensifies
coldwaves, both having distinct environmental, social, and policy implications. Hence,
anomalies were also disaggregated into positive and negative values, setting negative
anomalies to zero when calculating positive anomalies and vice versa.

Additionally, the analysis incorporated another anomaly measure using the Universal
Thermal Climate Index (UTCI), obtained from the ERA5-HEAT database provided
by the European Centre for Medium-Range Weather Forecasts (ECMWF) through the
Copernicus Climate Change Service (Di Napoli et al., 2021). UTCI is an index that
extends temperature measures to include further humidity, wind, clothing insulation,
and solar radiation to capture the climate as perceived by the human body (Fiala et al.,
2012), and was also applied, among others, in Hoffmann, Muttarak, Peisker et al. (2022).
However, it should be noted that UTCI has limitations, as it represents reanalysis data
derived from an energy-balance model (Dell et al., 2014; Fiala et al., 2012). In contrast,
the GHCN temperature data is based on real weather station observations, though it
can be less accurate in areas with sparse station coverage. While reanalysis improves
data availability in such regions, it remains a model output and cannot fully match
the accuracy of direct observations (Dell et al., 2014), which is why including both in
the subsequent analysis can overcome these gaps. To integrate UTCI into the analysis,
data was extracted from the NetCDF files containing daily UTCI values for 24 hours for
the period 1981–2024. Before processing, UTCI values were converted from Kelvin to
Celsius by subtracting 273.14 before averaging the 24 raster bands to a single daily value
band (Di Napoli et al., 2021). These were then aggregated over the GHS-UCDB polygons
to obtain the daily mean UTCI for each urban centre. Anomalies were then computed
by establishing a baseline for hot and cold seasons, averaging data from 1981 to 2010 for
each urban boundary. For the observation period, the respective hot and cold season
means were then calculated, and anomalies were determined as their deviations from
the baseline. Finally, as with the GHCN temperature data, crude, positive, and negative
anomalies per urban centre were derived.
Moreover, the availability of daily UTCI data enabled the computation of extreme
temperature deviations as a measure of temperature shocks and spells. Heat and cold
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shocks were identified by first calculating the 95th and 5th percentiles of UTCI from 1981
to 2010 using a rolling 30-day window for each urban boundary. A day within the obser-
vation period was then classified as a heat shock if its UTCI exceeded the 95th percentile
and a cold shock if it fell below the 5th percentile of its 30-day baseline. Furthermore,
spells were defined based on consecutive shocks. A heat spell was identified as three or
more consecutive days of heat shocks, while a cold spell was defined as three or more
consecutive days of cold shocks. This follows the application in Hoffmann, Muttarak,
Peisker et al. (2022). The shocks and spells were then aggregated to capture the total
number of heat and cold shocks and spells experienced by each urban centre in each
season within the observation period.

Since the analysis also considered exposure to natural disasters, data from the Emer-
gency Events Database (EM-DAT) (Centre for Research on the Epidemiology of
Disasters, 2024), which has been widely used in research, including in the studies
by Rowan (2022) and Nohrstedt, Hileman, Mazzoleni et al. (2022), was incorporated.
EM-DAT records significant disaster events based on having at least ten fatalities, 100
or more people affected, a declared state of emergency, or an international assistance
request (Centre for Research on the Epidemiology of Disasters, n.d.b). To ensure that
only disasters potentially related to climate change were considered, the focus was on
the three primary EM-DAT disaster categories: hydrological (floods, including coastal
and riverine), meteorological (storms and extreme temperatures), and climatological
(wildfires and droughts). EM-DAT has aligned all data from 2000 onwards with the
Global Administrative Unit Layers (GAUL) (Food and Agriculture Organization of the
United Nations, 2018) at the Admin-1 (e.g., regions) and Admin-2 (e.g., cities, districts)
levels, which was particularly useful for integrating the database with the GHS-UCDB.
Thus, to incorporate the EM-DAT into the analysis, the GAUL layer was first spatially
joined with the GHS-UCDB, which assigned each urban boundary its corresponding
Admin-1 and Admin-2 codes. The two databases were then merged by matching disaster
events to Admin-2 codes where available, otherwise to Admin-1 codes, following the
recommendations described in the EM-DAT documentation (Centre for Research on the
Epidemiology of Disasters, n.d.c). It should be noted that the administrative boundaries,
particularly in cases where second-level ones were missing, often covered larger areas
than the actual disaster impact. This led to spatial overcounting, where some disasters
recorded within GHS-UCDB boundaries may have occurred near, rather than directly
within urban centres. This introduced a measurement error, which is acknowledged as
a limitation of this approach. Nonetheless, nearby disasters may remind urban centres
of their own vulnerability and including them may still prove valuable. Moreover,
substantial missing data was observed in the human impact variables after matching
with the GHS-UCDB panel: 87% of records lacked information on homelessness, 86% on
insured damages (USD), 77% on injuries, 41% on total damages (USD), 41% on affected
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populations, 27% on total affected individuals, and 10% on fatalities (see Appendix C).
Previous research (e.g., Jones, Kharb and Tubeuf (2023)) highlighted the risks of relying
on incomplete disaster data, and therefore, the analysis focused on disaster occurrences
and fatalities, despite the latter having 10% of missingness. Death figures were averaged
over the corresponding seasonal period to address this issue rather than relying on
individual event counts, which would have been more intuitive. To further reduce bias,
cities with more than five missing records over the observation period were excluded
from the estimations involving disaster-related deaths. Finally, the start date of each
disaster was used to assign its corresponding season and integrate it into the panel data
frame. Moreover, since it was shown in previous research that different type of disasters
had different implications for climate action (Gabbe et al., 2024; Ji and Darnall, 2022),
this process was repeated for hydrological, climatological, and meteorological disasters.
This resulted in the seasonal weather-related (crude and disaggregated considering
hydrological, meteorological, and climatological disaster) disaster occurrences and
associated average fatalities experienced by each urban centre. The fatality figures were
further adjusted in the analysis by applying a log transformation.

Beyond the presented exposure measures, the analysis incorporated additional controls
informed by the literature on urban climate action.
For instance, to account for the potential influence of sea-level rise on network participa-
tion, as highlighted by Reckien, Flacke, Olazabal and Heidrich (2015) and Zahran, Brody,
Vedlitz, Grover and Miller (2008a), the Low Elevation Coastal Zone (LECZ) layer from
the Socioeconomic Data and Applications Center (SEDAC) (CIESIN, Columbia Univer-
sity, 2013) was included in the analysis. The LECZ dataset identifies coastal areas below
10 and 5 meters in elevation. An overlap analysis was conducted to integrate this mea-
sure with the GHS-UCDB, calculating the percentage of each city’s boundary that inter-
sected with a low-elevation coastal zone of less than 10 meters above sea level.
Moreover, the analysis included species threatened by climate change as a proxy for eco-
sensitivity since cities may be more inclined to engage in climate action, such as joining
the GCoM, driven by the need to protect their ecosystems, as was discussed in Zahran,
Grover, Brody and Vedlitz (2008b). Hence, spatial data from the International Union for
Conservation of Nature Red List (International Union for Conservation of Nature, 2023),
which maps the distribution of species threatened by climate change, was spatially joined
with GHS-UCDB boundaries to determine the count of endangered species within each
urban area.
Furthermore, as previously determined by Nohrstedt, Hileman, Mazzoleni et al. (2022),
Reckien, Flacke, Olazabal and Heidrich (2015), Zahran, Grover, Brody and Vedlitz
(2008b), and Zahran, Brody, Vedlitz, Grover and Miller (2008a) city-level affluence may
be an important determinant of climate action. To this end, the analysis incorporated the
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Human Development Index (HDI), which measures three dimensions: economic condi-
tions (GNI per capita, adjusted for purchasing power parity), education (mean years of
schooling), and health (life expectancy) (United Nations Development Programme, n.d.).
Given its strong correlation with governance quality and GDP (Stryzhak et al., 2022), and
its inclusion of education levels, which was also linked to greater support for climate
policies (Zahran et al., 2008a,b), HDI was preferred over GDP as a more comprehen-
sive indicator of city-level affluence. Kummu, Taka and Guillaume (2018) improved HDI
estimates by breaking down national data into a detailed grid using population distribu-
tion and information on the level of infrastructure, which enhanced typical country-level
HDI measures. This gridded HDI data was then spatially merged with the GHS-UCDB
boundaries to calculate the average HDI values within each urban centre, with its loga-
rithmic transformation included in the subsequent analysis.
Additionally, since capital cities often act as innovative hubs and frontrunners in climate
action, their influence may extend to nearby urban areas (Orttung, 2019). To account for
spillover effects from capital cities, the analysis included the logarithm of each urban cen-
tre’s travel time to the national capital (in minutes, excluding flights), which was already
available in the GHS-UCDB (Weiss et al., 2018).
The analysis further included city size as a control variable, acknowledging that larger
cities with denser populations face more significant climate threats but often have more
resources to implement climate initiatives. The positive relationship between city size
and climate action has been further established in the empirical literature by Reckien,
Flacke, Olazabal and Heidrich (2015), Salvia et al. (2021a), and was theoretically sup-
ported in Eisenack (2024). Thus, city size was controlled by including a logarithmic trans-
formation of the polygon size of each urban centre.
Moreover, Zahran, Brody, Vedlitz, Grover and Miller (2008a) highlighted that cities with
high industrial activity may rely more on carbon-intensive industries, creating conflicts
of interest that hinder climate action. To account for this, the analysis included non-
short-cycle industry CO emissions from the European Commission’s Emissions Database
for Global Atmospheric Research (EDGAR v4.3.2) (Crippa et al., 2018), which was pre-
included in the GHS-UCDB for the year 2012. Non-short-cycle emissions come from fossil
fuels that have been stored for millions of years. When burned, they release CO that has
been long removed from the atmosphere. In contrast, short-cycle emissions are part of the
natural carbon cycle and can be absorbed by vegetation within years or decades (National
Aeronautics and Space Administration , NASA). This measure was further standardized
per capita to ensure comparability across cities before a logarithmic transformation was
applied in the analysis.
Finally, data on fine particulate matter was included to account for the potential role of
air pollution on climate action. Since fine particulate matter can penetrate the lungs and
bloodstreams and therefore pose serious health risks for urban populations (Xing et al.,
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2016), cities with higher pollution levels may face greater pressure to address environ-
mental concerns and take on climate action. Thus, the logarithmic transformation of
PM2.5 concentration levels for each urban centre in 2014, which were already available
in the GHS-UCDB and originally sourced from the Global Burden of Disease (Global
Burden of Disease Collaborative Network, 2017), was included in the analysis.

3.3 Empirical Models

To test the hypotheses presented in section 3.1, the subsequent analysis applied discrete-
time survival models which estimated the seasonal likelihood of cities in the GHS-UCDB
sample joining the GCoM, provided they had not done so before. Discrete-time survival
analysis was suitable for this analysis, as GCoM participation is a one-time event per
city, which this method can accommodate. Moreover, it handles time-to-event data in
discrete intervals, which aligned with the fixed seasonal observation periods (Allison,
1982; Tutz and Schmid, 2016). Another advantage of this method is that it didn’t require
the hazard, i.e., the probability of a city joining the GCoM at a given season, to be
proportional (referring to the risk of an event occurring when all covariates are set to
zero being constant) across all time points (Suresh et al., 2022). Instead, it allowed for
the probability of participation to vary at different time intervals, which was important
in this case, as external factors, such as growing awareness of the GCoM with time,
may influence its participation rate. Moreover, discrete-time modeling can handle right
censoring, allowing for cities that may join after the observation period but whose exact
timing remains unknown, to be included (Tutz and Schmid, 2016). Additionally, this
approach can easily be implemented using logistic regression, where the log-odds of
joining the GCoM in each period would be estimated as a function of time and other
covariates (Tutz and Schmid, 2016).

Due to their different eligibility periods, the following estimations were conducted sep-
arately for European and non-European cities. European cities became eligible in 2008,
resulting in 33 seasons during which they were at risk of joining, while non-European
cities could join only from 2014, i.e., their at-risk period covered 19 seasons (European
Commission, 2016; Reckien et al., 2018). While differences in time at risk, which is known
as left truncation, are generally not an issue in discrete-time survival analysis (Tutz and
Schmid, 2016), the subsequent analysis modelled each season as a fixed effect. By in-
corporating time at risk as a fixed effect, the model estimated a logit-hazard rate that
varied across periods while also allowing for time-fixed effects, which further permit-
ted to control for differences in exposure between hot and cold seasons, as well as other
unobserved time-related factors. For these reasons, European-and non-European cities
were estimated separately. Moreover, to reduce omitted variable bias, and to control for
national differences in climate policies, and approximate the underlying socio-economic
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factors, and governance conditions, which have been previously shown to shape climate
action, country-fixed effects were included in the analysis. This resulted in the follow-
ing model specification which presents the estimated discrete-time survival model with
a logit link function, time-varying exposure variable, fixed covariates, and country-fixed
effects:

logit(hit) = αt + γi + εXit + ϱZi + εit (3.1)

In which the hazard probability hit represents the likelihood that city i joins the GCoM
at time t conditional on not having joined before. The model includes time fixed effects
αt to account for the baseline hazard varying across time periods and country fixed
effects γi to control for unobserved country-level factors. The main explanatory variable
Xit represents the time-varying exposure measure (e.g., GHCN or UTCI temperature
anomalies, UTCI cold or heat shocks and spells, the number of natural disasters crude, or
disaggregated, or the logarithm of deaths from disasters), whose effect on participation
is reflected in the coefficient ε. Additionally, Zi represents the set of time-invariant
city-level covariates, with their respective coefficients denoted by ϱ, while εit denotes
the error terms. It should be noted that the estimation presented in Equation 3.1 was
extended to assess the role of exposure over different time horizons, with an additional
model incorporating a one-period lag of the exposure variables Xi,t↑1 to account for
potential delays in bureaucratic decision-making following a climate shock. Moreover, to
test for more persistent effects, further specifications also included six-period ( 1

6 ∑t
t↑5 Xit

) and twelve-period ( 1
12 ∑t

t↑11 Xit ) lagged means.

Spatial autocorrelation in the exposure variables was another concern in this analysis.
If cities close to one another have similar characteristics, they may also exhibit similar
probabilities of joining the GCoM, potentially leading to member cities being clustered in
space. This aligned with Tobler’s First Law of Geography, which stated that “Everything
is related to everything else, but near things are more related than distant things” (Miller, 2004,
p 284). As Lichstein et al. (2002) has noted, spatial autocorrelation could pose a significant
problem in an estimation since its presence violates the assumption of the independence
of the observation and thus of the residuals. This would lead to an underestimation of the
sum of squared errors and an inflated test statistic, potentially distorting the estimated
effects of exposure on GCoM participation. To this end the Moran’s I statistics were com-
puted to assess whether GCoM membership and the exposure variables exhibited spatial
autocorrelation. Moran I is a correlation coefficient ranging from -1 to +1 and measures
whether a variable tends to be spatially clustered or randomly distributed. When the
statistic takes a positive value, all similar values appear together, while with a negative
value, distinct values appear in close association. Cliff and Ord (1981) defined the statistic
as follows:
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I =
(

N
W

)
↓

(
∑i ∑j wij(xi ↑ x̄)(xj ↑ x̄)

)

∑i(xi ↑ x̄)2
(3.2)

Where N represents the total number of observations (cities), xi and xj are the values of
the variable of interest for cities i and j, and x̄ is the mean of this variable. The spatial
weight matrix wij defines the relationship between cities i and j, while W is the sum of
all spatial weights.
Moran’s I was computed separately for each season, across multiple distance bands
(0-500 km, 500-1000 km, 1000-1500 km, 1500-2000 km, and 2000-2500 km), for all
exposure measures and the outcome variable, GCoM participation. All results revealed
to be highly significant, and Moran’s I was then averaged across all seasons to provide
an overall estimate of the correlation. As shown in Appendix C, substantial spatial
autocorrelation in both exposure measures and GCoM participation was observed.
Additionally, since neighboring regions often share similar socioeconomic characteristics
and climate conditions (Dell et al., 2014; Rowan, 2022), this type of spatial dependence
should also be considered.

Since spatial autocorrelation was present in both the exposure and outcome variables,
each model was estimated using Conley robust standard errors. Instead of assuming that
residuals are entirely independent, Conley standard errors account for spatial correlation
between nearby observations by applying a weighting function that determines how
much influence one city’s residual has on another based on their distance. This method
assumes that the correlation between cities weakens as distance increases, and at a
predefined cutoff distance, it is assumed to be zero (Conley, 1999). Thus, the choice of
cutoff distance is crucial. In this analysis, the distance cutoff was informed by Moran’s I
tests on the residuals, as detailed in Appendix C. Residuals from estimations including
various exposure measures were tested for spatial autocorrelation across multiple
distance bands (0-500 km, 500-1000 km, 1000-1500 km, 1500-2000 km, and 2000-2500
km). A cutoff was then determined based on statistical significance (p<0.1) and Moran’s
I values falling below an absolute threshold of 0.05, which was considered negligible
autocorrelation. Spatial dependence in the residuals, if present, were all observed within
the first distance band (0-500 km), which resulted in the Conley cutoff level of 500 km
applied in the estimations.

Furthermore, to compare survival probabilities over the observation period, stepwise
Kaplan-Meier survival curves were plotted. To this end, the Kaplan-Meier estimator was
computed, which estimates the probability that a city has not yet joined the GCoM (i.e.,
it “survived”) by a given time. The Kaplan-Meier estimator S(t) is defined as (Tutz and
Schmid, 2016):
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S(t) = ∏
j:tj↔t

(
1 ↑

dj

nj

)
(3.3)

Where S(t) represents the probability that a city remains a non-member (i.e., “survived”)
at time t, dj is the number of cities joining (i.e., “failed”) the GCoM at time tj, and nj is
the number of cities still at risk of joining just before tj. The estimator calculates survival
probability by multiplying conditional probabilities of "surviving" each season, adjust-
ing for the decreasing number of cities still at risk over time (Tutz and Schmid, 2016).
Kaplan-Meier survival curves were plotted separately for European and non-European
cities to visualize differences in their participation rates. Furthermore, Kaplan-Meier
curves were computed for cities within different temperature anomalies quartiles
(calculated as deviations from 2015 to 2023, with respect to the 1981-2010 baseline) for
both UTCI and GHCN data, separately for European and non-European urban centres.
Similarly, survival curves were also estimated for cities across different quartiles of the
number of weather-related disasters experienced between 2000 and 2024.

In addition, a log-rank test was conducted to assess whether the observed differences in
participation rates among groups in the Kaplan-Meier survival curves were statistically
significant. The test statistic is defined as (Kalbfleisch and Prentice, 2002):

χ2 = ∑
j

(
(Oj,1 ↑ Ej,1)2

Ej,1

)
+

(
(Oj,2 ↑ Ej,2)2

Ej,2

)

(3.4)

Where O(j,k) is the observed number of cities in group k (e.g., European or non-European)
that joined the GCoM at time tj, and E(j,k) is the expected number of cities in group k that
would have joined if survival probabilities were the same across groups. The log-rank
test compares observed and expected events at each time point, summing the squared
differences to determine whether the survival curves diverged significantly. The test
follows a chi-square distribution, with a p-value below 0.05 indicating a statistically
significant difference between the survival curves (Kalbfleisch and Prentice, 2002).

Finally, one of the main challenges was isolating the effect of the exposure measures,
especially when dealing with such a large dataset and geographic scope, which intro-
duced the potential for high sensitivity in the estimates. Moreover, confounding could
arise if factors influencing a city’s exposure to climate events also impacted its probability
of joining the GCoM. For example, if more affluent cities also experienced higher levels
of exposure, they may be more likely to join the GCoM due to their greater capacity to
take climate action. In this case, the climate exposure coefficient ε could be biased as it
may reflect the effect of a city’s affluence rather than the effect of its exposure. Thus, to
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enhance the robustness of the survival estimations, Inverse Probability Weighting (IPW)
was applied. This method addressed potential confounding by reweighting observations
according to their probability of experiencing a given exposure level, as determined by
the covariates. Thus, it made cities comparable of their baseline characteristics, which
allowed for a more accurate estimation of the relationship between climate exposure and
GCoM participation. (Hirano and Imbens, 2004; Naimi et al., 2014).
Inverse probability weights were derived following recommendations for continuous
treatments, using first a generalized propensity score (GPS) model to estimate the con-
ditional density of the exposure variable based on the observed covariates (Naimi et al.,
2014). These covariates aligned with those used in the discrete-time survival model in
Equation 3.1. However, the specification was adjusted to account for geographical differ-
ences in exposure without overfitting. Thus, unlike the survival model, which incorpo-
rated country-fixed effects, the GPS model included broader regional fixed effects (e.g.,
Southern Europe, Eastern Asia). Additionally, time-fixed effects were omitted, as the
GPS model did not operate within the survival framework. The GPS model followed a
Gaussian specification and was estimated as follows:

Xit = γr + εZi + εit, εit ↗ N(0, σ2) (3.5)

Where Xit represents the continuous exposure variable (e.g., GHCN anomalies) for city
i at time t. The vector Zi includes covariates related to GCoM participation and poten-
tially influencing exposure. γr represents the regional fixed effects, while the error term
εit ↗ N(0, σ2) accounts for unobserved variation. From this, the GPS, representing the
conditional probability density of exposure, was then derived as (Naimi et al., 2014):

e(Xit|Zi) =
1↘

2πσ2
exp

(
↑ (Xit ↑ γ̂r ↑ εZi)2

2σ2

)
(3.6)

Which corresponded to the predicted probability density function of the exposure vari-
able Xit conditional on the covariates Zi and regional fixed effects γr. In another step, the
unconditional probability density fx(Xit) was estimated. The unconditional probability
density represented the general likelihood of an exposure level across all observations in
the dataset, independent of the covariates (Naimi et al., 2014). It was obtained using a
Gaussian model with only an intercept as:

Xit = µx + εit, εit ↗ N(0, σ2
x) (3.7)

Where, µx represented the unconditional mean of the exposure Xit, while σ2
x represents

its variance. This allowed to derive the unconditional probability density function as
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(Naimi et al., 2014):

fX(Xit) =
1√

2πσ2
X

exp
(
↑ (Xit ↑ µ̂X)2

2σ2
X

)

(3.8)

And finally, the so-called stabilized inverse probability weights were computed as (Naimi
et al., 2014):

wi =
fX(Xit)

e(Xit | Zi)
(3.9)

Where fX(Xit) represents the unconditional probability density of the exposure variable,
i.e., independent of the covariates, which is the overall likelihood of exposure across
all cities. While e(Xit | Zi) corresponds to the probability density of the exposure
variable, conditioned on the included covariates (Naimi et al., 2014). By dividing these,
the weights corrected for confounding, making cities more comparable in terms of the
included covariates (Hirano and Imbens, 2004).

To guarantee the stability of the weights, they were further normalized to ensure that the
average weight remained centered around 1, and trimmed at the 5th and 95th percentile
to cap extreme values (Lee et al., 2011). Moreover, covariate balance was assessed to
ensure that the weighting process successfully adjusted for confounding. This involved
comparing the correlation of covariates with the exposure measure, both before and after
weighting, which is presented via love plots in Appendix D. Additionally, a threshold
of 0.1 on standardized mean differences (SMDs) was applied. SMDs measure the differ-
ence in the mean values of each covariate between cities with different levels of exposure,
relative to the overall variability in that covariate (Greifer, 2025a). For example, if cities
experiencing higher temperature anomalies also tended to have a much higher HDI than
those with lower anomalies, the standard mean difference would be large, indicating im-
balance. Thus, in this analysis, a SMD below 0.1 was deemed good balance, meaning
the weighting successfully reduced bias in covariate distributions, while an SMD above
0.1 suggested that the weighting did not fully correct for differences, meaning potential
confounding remained (Greifer, 2025a; Zhu et al., 2015). Finally, the weights were in-
cluded in the initial discrete-time survival model in Equation 3.1 to estimate the effect of
climate exposure on GCoM participation while accounting for confounding. All original
covariates were retained, even after adjusting for confounding, to ensure double-robust
estimation (Greifer, 2025b). That said, as opposed to the previous survival estimations,
the coefficients from the weighted estimations were not directly interpreted, but instead,
G-computation was applied to estimate treatment effects, as recommended by Greifer
(2025b). This approach involved computing predicted probabilities of the outcome at
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different levels of the continuous treatment variable while averaging over the covariate
distribution (Greifer, 2025b). From these, average dose-response functions (ADRFs) were
plotted to provide a visual representation of how predicted probabilities of GCoM partic-
ipation changed across different levels of the exposure measures. These were necessary
steps as misinterpreting the coefficients in the weighted model is not advised and known
as the Table 2 fallacy (Greifer, 2025b; Westreich and Greenland, 2013).
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Chapter 4

Results

4.1 Descriptive Analysis

The following section provides a descriptive overview of the variables used to analyze
the effect of exposure to climate change on local governments’ propensity to join the
GCoM.
The final analyzed dataset contained 11,344 cities and their geographical distribution
across the globe is displayed in Figure 4.1. The countries with the most representation
were India (3,247), China (1,849), Ethiopia (557), Nigeria (483), and Indonesia (391).
Due to the GHS-UCDB inclusion criteria requiring urban areas to have a minimum
population of 50,000, there was a disproportionate representation from countries with
larger urban populations. However, no adjustments were made, as the sample was
considered representative of the global distribution of cities. Furthermore, the included
country-fixed effects in the subsequent analysis were deemed to account for this.

FIGURE 4.1: Distribution of GHS Urban Centres in Sample
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Regarding the distribution of GCoM member cities by country, Italy had the highest
membership in the sample, with 83 cities, followed by the United States with 78. Spain
and Ukraine each had 60 member cities, Brazil had 59, and Mexico and France had 44 and
40, respectively. Argentina (34), the United Kingdom (31), and Germany (29) completed
the top ten. Several countries exhibited a high overall presence of GCoM member cities,
with almost all cities included in the sample from Italy, France, Ukraine, and Spain being
members.
Of the 11,344 urban centres considered, 1,126 had joined the GCoM by March 2024, ac-
counting for approximately 10 percent of the sample. Figure 4.2 illustrates the adherence
of these cities by hot and cold seasons, categorized by continent. The EU Covenant of
Mayors, launched in January 2008, initially targeted European cities (European Com-
mission, 2016), as visible in the left portion of the graph. Membership surged from Oc-
tober 2008 to March 2009, followed by a gradual but slower increase among European
cities until the launch of the UN Compact of Mayors in September 2014 (Reckien et al.,
2018). Following this, some Latin American cities joined immediately, while cities in
North America, Asia, Africa, and Oceania began participating in the following season.
From 2015/2016 onward, membership growth in North America, Europe, and Oceania
slowed, while cities in Asia, Africa, and Latin America & the Caribbean continued to
join. By the end of the observation period, European urban centres remained dominant,
accounting for nearly half (501) of all GCoM members, most of whom had joined before
the launch of the GCoM in 2016. Nonetheless, participation was geographically diverse
and included 137 African cities, 174 Asian cities, 202 in Latin America and the Caribbean,
96 in North America, and 16 in Oceania.

FIGURE 4.2: Adherence to the Global Covenant of Mayors in Sample of
GHS Urban Centres, by Season (Hot/Cold) & Continent
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To further highlight the geographical reach of the GCoM, the map in Figure 4.3 displays
the distribution of GCoM member cities within the GHS-UCDB sample in red dots. A
high concentration of members is notable in Europe, across all countries except for Rus-
sia. Furthermore, GCoM membership expanded beyond Europe: In North America, par-
ticipation is widespread, particularly in the United States and Mexico, while in Latin
America, it is broadly distributed across the region. Moreover, although fewer cities
from Oceania were included in the sample, the map indicates that many of those were
members. In contrast, while urban centres across East and Southeast Asia were densely
represented in the sample, this density is not mirrored in the map, though some partic-
ipation is still evident, most of which is in Japan. This was also the case for Indian, as
well as for East, West, and Northern African cities, where, despite some being members,
participation remained low relative to the number of cities included in the analysis.

FIGURE 4.3: Global Covenant of Mayors for Climate and Energy Members
within Sample of GHS Urban Centres (Data Status: March 2024)

To test the hypotheses presented in Chapter 3.1., the subsequent analysis examined
whether member cities also corresponded to those with high exposure. Therefore, the
focus now shifts to the exposure measures incorporated in the analysis.
The maps in Figures 4.4 and 4.5 illustrate average surface air temperature anomalies (de-
rived from GHCN data) and Universal Thermal Climate Index (UTCI) anomalies for the
urban centres in the GHS sample, using the 1981-2010 baseline and the 2015-2023 ref-
erence period. Both maps employed the same color gradient, which ranges from -0.5
to +2 degrees Celsius, to ensure comparability. Warmer-than-baseline temperatures are
represented in shades of orange and red, with darker colors indicating stronger positive
anomalies. It should be noted that in the map in Figure 4.4, one surface air tempera-
ture anomaly slightly exceeded the 2-degree mark in the legend, being Norilsk, Russia,
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at 2.16°C. Additionally, only a few urban centres had negative anomalies: four in the
GHCN data (three in Chile and one in Argentina) and six when considering UTCI data
(two in Colombia, one in Chile, and three in the United States).

FIGURE 4.4: Average GHCN Surface Air Temperature Anomalies within
Sample of GHS Urban Centres – 2015-2023 Relative to the 1981-2010 Base-

line Period

FIGURE 4.5: Average Universal Thermal Comfort Index Anomalies within
Sample of GHS Urban Centres – 2015-2023 Relative to 1981-2010 Baseline

Period
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Both maps display similar spatial trends, showing notable global warming with the
most significant deviations observed in the Northern Hemisphere, particularly in the
Mediterranean and Central Europe, where most GHCN anomalies reached or even
exceeded 1.5°C. Interestingly, when looking at the map in Figure 4.5, which depicts
UTCI anomalies, Central Europe displayed higher anomalies (approximately 1.5°C)
than the Mediterranean (approximately 1.2°C), clearly distinguishing the two regions.
East Asia, including China and Japan, also experienced considerable warming, with
many cities having GHCN anomalies exceeding 0.8°C and UTCI anomalies above 0.5°C
relative to the baseline. Urban centres in Northern Africa exhibited a similar pattern,
with anomalies again being moderately more pronounced considering GHCN data than
UTCI values. Northern America, and Mexico further displayed widespread anomalies
ranging from approximately 0.6°C to 1 °C in both maps. Moreover, the most affected
cities appeared to be located in Northern Russia, especially in Siberia, where average
temperatures were 2°C above the baseline in both maps. While warming was also
evident in the Southern Hemisphere, it generally remained more moderate compared
to the Northern Hemisphere, which is particularly notable in the map considering
UTCI anomalies. Temperature anomalies in India, Central Africa, Southeast Asia,
mid-to-southern Africa, and urban centres in Latin America, except for a few localized
clusters, stayed below 0.5°C based on UTCI data and below 0.8°C considering GHCN
data. Urban centres in New Zealand and Australia showed a similar trend.
Furthermore, it was noticeable that the map displaying UTCI anomalies has more
variability than the one based on GHCN anomalies. This may be attributed to the
finer spatial resolution of the UTCI data (0.5°x0.5° grid), which potentially captured
more variations than the GHCN data (1°x1° grid). Additionally, anomalies were higher
across many regions using GHCN data compared to UTCI data, although the overall
spatial patterns remained the same. Nonetheless, both maps indicate significant global
warming, with the Northern Hemisphere, particularly Europe, being more affected than
the Southern Hemisphere, suggesting that cities in the Global North have the most to
gain from joining the GCoM.

After having provided an overview on the spatial patterns of temperature anomalies, the
plots in Figure 4.6 depict their temporal trends. Temperature anomalies are displayed us-
ing GHCN and UTCI data for the GHS urban centres sample across hot and cold seasons
from 2000 to 2024. Anomalies were computed relative to their respective seasonal base-
line considering the period from 1981 to 2010. Cold seasonal anomalies are presented on
the left, and hot seasonal anomalies are on the right, while the top row illustrates anoma-
lies using GHCN data, and the bottom row presents UTCI anomalies. The black line in
each graph denotes the overall average anomaly across all urban centres in the sample,
with grey lines depicting individual city-level tracings. The blue dashed line at zero de-
grees serves as a reference for no deviation from the baseline, whereas the black dashed
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line represents the trend. The darker shaded background marks the observation period
in the analysis.

FIGURE 4.6: Temporal Trends of Average GHCN Surface Air Temperature
and UTCI Anomalies within Sample of GHS Urban Centres - Hot and Cold

Seasons 2000-2024 Relative to the respective 1981 Base Periods

A clear warming trend is evident across all four plots. Although anomalies fluctuated
annually, both GHCN and UTCI anomalies rose over time across hot and cold seasons, as
indicated by the upward-sloping trendlines, with periods of decline being less significant
than those of increase. This reinforces the notion that global warming will continue in
the future. Moreover, the fluctuations were more pronounced in cold seasons compared
to hot seasons, with a rise in GHCN and UTCI anomalies in recent years, most notably
in 2023/2024. In this season, the average GHCN anomaly in the GHS-UCDB sample
was 1.3°C, while the UTCI anomaly reached 2.5°C. It is also noteworthy that despite the
fluctuations, cold season anomalies remained relatively close to 0°C between 2009/2010
and 2013/2014 before increasing significantly. Similarly, hot season anomalies when
considering UTCI returned to the baseline in 2013 before gradually rising again, while
GHCN anomalies diverged more from the baseline starting in 2008. Moreover, although
less pronounced than in cold seasons, warming trends across hot seasons were also
evident, with the trend line reaching 0.7°C in GHCN anomalies and 0.6°C in UTCI
anomalies by 2023. Furthermore, as shown in the previous maps illustrating spatial
patterns, individual city tracings further emphasized that UTCI anomalies exhibit more
variability than GHCN temperature anomalies.
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Since the analysis considered both temperature deviations and natural disasters as indi-
cators of climate change exposure, the following will shift focus to the spatial and tem-
poral patterns of weather-related disasters.

FIGURE 4.7: Weather-Related Disaster Events within Sample of GHS Ur-
ban Centres, by Type (April 2000 – March 2024)

To this end, the four maps in Figure 4.7 illustrate the geographical distribution of natural
disasters within the sample of GHS urban centres from April 2000 to March 2024,
showing both the overall occurrence of weather-related disasters and their individual
categories: hydrological, climatological, and meteorological. It is important to note that,
due to the aggregation process at higher administrative levels, urban centres may be
associated with disasters experienced by neighboring areas or the entire country rather
than only those that directly affected them.
The first map in the top left illustrates the total number of weather-related disasters per
urban centre, with darker red colors indicating a higher frequency. Clusters of high
concentrations are visible in China, Southeast Asia, large parts of India, the eastern
United States, and Mexico, where urban centres recorded between 70 and 100 disasters.
Moderate disaster frequencies can also be observed across Central America, northern
South America, and the Mediterranean region, with disaster counts ranging from 30 to
70. Furthermore, fewer disaster counts, ranging from 10 to 30 records, are noticeable
in Europe and sub-Saharan Africa, while urban centres located in Russia, Canada, the
Caucasus, and central Africa show little to no occurrences.
Using blue colors, the top right map visualizes hydrological disasters, including all
types of floods and wet landslides. A notable concentration is observed in eastern
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China, where disaster frequencies exceed 50 per urban centre. Cities surrounding east
China, Vietnam, and Bangladesh also display high records, ranging between 30 and 50
occurrences. Moderate disaster frequencies are visible in parts of India, Southeast Asia,
and some regions of Central and South America, with recorded occurrences ranging
from 10 to 30 events. Regions with low occurrences (fewer than 10 events) are further
observed in cities across Europe, Africa, North America, Russia, and Canada.
The geographical distribution of climatological disasters, which include wildfires and
droughts, is highlighted in the bottom-left map using a green color gradient. Compared
to other disasters, climatological events appeared significantly less frequent, with the
highest concentration in parts of North America, particularly the western United States
and northern Mexico, showing frequencies between 15 and 20. Moderate representation
of disaster counts ranging from 5 to 10 was also found in South American (southern
Brazil and Argentina), North African, Middle Eastern, Russian, and Central Asian urban
centres, while the rest of the cities in the sample appeared relatively unaffected.
Finally, the last map in the bottom right displays meteorological disasters, including
storms and extreme weather events, using a yellow color gradient. Notably, the south-
eastern United States appears especially prone to meteorological disasters, with urban
centres recording between 75 and over 100 events. Eastern China and the Philippines
also show a high occurrence of disasters, with events ranging from 50 to 75. Moderate
disaster occurrences, ranging from 25 to 50, are observed in cities in India, Japan, Central
Europe, and Mexico. In contrast, urban centres with low to no recorded disasters are
noticeable across South America, Russia, Africa, and Southeast Asia.
Consequently, the maps indicate that disasters occurred in spatial clusters, both in
general and by specific categories with some areas experiencing multiple types of
disasters, while others remained relatively unaffected. For instance, certain regions, such
as the United States, South Asia, and Southeast Asia, experienced a high frequency of
various categories of natural disasters, with meteorological and climatological events
contributing to the frequency of disasters in the eastern United States, while Southeast
Asia and India were primarily impacted by meteorological and hydrological disasters. In
contrast, others, like Europe, Russia, and parts of Africa, had significantly fewer events,
with meteorological disasters appearing as the most prevalent disaster type in Europe.
Another observation was that hydrological and meteorological disasters accounted for
most weather-related events, whereas climatological disasters appeared relatively rare.

After having explored the spatial patterns of disaster prevalence, the following describes
their temporal trends, with the bar plot in Figure 4.8 illustrating the seasonal (hot and
cold) occurrence of weather-related disasters in GHS urban centres from 2000 to 2024.
Disasters were categorized into climatological (green), hydrological (blue), and meteoro-
logical (orange) events, while the lines represent their trends across hot (red) and cold
(blue) seasons. It is important to note that, unlike before, this plot represents a total of
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5,524 disaster events across all urban centers combined. The number of disasters experi-
enced per city, as depicted in the maps in Figure 4.7, was significantly higher, as multiple
cities were often affected by the same disaster simultaneously.

FIGURE 4.8: Weather-Related Disaster Occurrence within Sample of GHS
Urban Centres, by Season (Hot/Cold 2000-2024)

Looking at the plot, it becomes apparent that hydrological disasters made up the largest
share of weather-related natural disasters, followed by meteorological disasters, while
climatological disasters remained relatively rare. The latter was also observed in the spa-
tial visualization. More interestingly, no clear temporal trend emerged from 2000 to 2021,
as disaster frequencies seemed to fluctuate rather than follow a consistent trajectory. The
most noticeable pattern was the seasonal variation, with disaster frequencies consistently
higher in hot seasons than in cold seasons from 2000 to 2022, as indicated by the trend
lines. However, this gap has narrowed in recent years, with hot seasons beginning to
record lower disaster frequencies than cold seasons as of 2022. Furthermore, it was
notable that the more recent seasons showed a general decline in disaster events, with
the most significant drop occurring in the cold season of 2023/2024. This last decline
may be attributed to EM-DAT’s data validation process, which finalizes figures for the
current year only at the beginning of the following year and cautions its users (Centre for
Research on the Epidemiology of Disasters, n.d.a). Therefore, to account for this, the last
season was excluded from the subsequent analysis when considering disaster estimates.

In summary, the descriptive analysis revealed spatial trends in warming, with tem-
perature anomalies being relatively more pronounced in the Global North than the



36 Chapter 4. Results

Global South, and significant deviations observed in Central Europe, East Asia, and
the Mediterranean. Moreover, UTCI anomalies displayed more variation, potentially
due to a finer spatial resolution than GHCN temperature anomalies, although both
datasets showed the same global warming patterns. Additionally, temporal trends
were found to reinforce the warming trend, indicating that both GHCN and UTCI
anomalies steadily increased over time. This was particularly pronounced in the recent
cold season, while differences in warming across seasons also became evident, with
the cold seasons being relatively more affected than the hot season. Weather-related
disaster data further highlighted regional patterns, with North America and South and
Southeast Asia experiencing the highest occurrences. Regarding the various types of
disasters, hydrological disasters dominated the sample, while meteorological disasters
were also significantly represented. In contrast, climatological disasters remained rare
and were more concentrated in specific regions, such as the West Coast of the United
States. Moreover, the seasonal temporal trends confirmed that hot seasons generally
experienced more disasters than cold seasons for most of the observation period,
although this pattern shifted in recent years. However, no clear temporal trends in
disaster occurence became evident for most of the observed period from 2000 to 2024.
These patterns were crucial for the subsequent survival analysis. First, fluctuations in
temperature anomalies and disaster exposure were important to determine whether the
timing of these climate events coincided with increased network participation. Second,
regional disparities in warming and disaster frequency were examined to explore
whether these spatial patterns aligned with the geographic distribution of member cities.

4.2 Survival Analysis

4.2.1 Kaplan-Meier Survival Curves

Before estimating the effect of the exposure measures on the hazard of urban centres
joining the GCoM, the Kaplan-Meier survival curves in Figure 4.9 provide an overview
of their survival probabilities over time. The y-axis represents the survival probability
(i.e., the probability that a city has not yet joined the GCoM), while the x-axis denotes
the time at risk of failure (i.e., the event that a city becomes a GCoM member). The
curves were computed separately for European and non-European cities due to their
different eligibility periods, which may have shaped their survival probability. European
cities were at risk starting from the cold season of 2007/2008, while non-European cities
became eligible in the hot season of 2014. The vertical dashed line at the time at risk
point 19 marks the right-censoring for non-European cities, while European cities were
censored at time point 33, both corresponding to March 2024.
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FIGURE 4.9: Kaplan-Meier Survival Curves for European & Global (excl.
Europe) Urban Centres in GHS Sample

The Kaplan-Meier survival curves revealed a significantly faster participation rate
among European cities (in blue) compared to global urban centres (in red). At the start
of the observation period, 1,006 European cities and 10,334 global cities were at risk of
joining the GCoM. Over time, participation rates diverged significantly, as indicated
by the curves. For instance, by the 10th time at risk point, the survival probability for
European cities dropped below 80 percent. At the same time, global cities still had a
survival probability close to 95 percent. By the end of their risk periods, 50 percent of
European cities had joined (i.e., 501 cities) with the number of at-risk cities declining
from 1,006 at the beginning to 505. In contrast, among non-European cities, 9,718 out of
10,334 remained at risk by the end of their risk period (616 cities had joined), resulting
in a survival probability of 94 percent. The log-rank test results (χ2 = 1750, p<0.001)
further reinforced European cities’ higher overall participation rate, with European cities
recording 501 GCoM memberships, significantly higher than the expected 144, while
non-European cities had 616 memberships, well below the expected 981.

Since the analysis focused on how climate exposure affects GCoM participation, Kaplan-
Meier survival curves were further computed according to the respective GHCN and
UTCI anomaly quartiles (0-25%, 25-50%, 50-75%, 75-100%) for European and non-
European urban centres, to determine if this showed significant differences in their sur-
vival probability (see Figure 4.10). The quartiles were based on the anomalies derived for
the 2015-2023 reference period relative to the 1981-2010 baseline period.
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FIGURE 4.10: Kaplan-Meier Survival Curves for European & Global (excl.
Europe) Urban Centres in GHS Sample, by Anomaly Quartiles

In the top-left panel, European cities were categorized into quartiles based on tem-
perature anomalies from GHCN data. The pattern observed indicated that cities with
higher temperature anomalies (in the 75–100% quartile) had a lower survival probability
by the end of the observation period, suggesting they joined the GCoM more quickly.
Conversely, cities in the 0–25% quartile displayed the highest survival probability,
indicating a slower participation rate. Similar results were found for cities within the
lowest UTCI anomalies (0–25%) in the top-right panel, which exhibited the highest
survival probability. In contrast to the survival curves plotted using GHCN anomalies,
cities in the highest UTCI anomaly quartile (75–100%) no longer had the lowest survival
probability, which was instead observed for cities in the 50–75% quartile. Nonetheless,
in both plots, the survival rate for the lowest anomaly group remained noticeably higher
compared to all other groups.
Turning to non-European cities, the bottom-left panel showed that cities experiencing
moderately high temperature anomalies (50–75% quartile) had the sharpest decline in
survival probability, indicating a faster rate of GCoM membership. In contrast, cities
in the lowest anomaly quartile (0–25%) had the highest survival probability. A similar
trend was observed for UTCI anomalies in the bottom-right panel, although the 75–100%
quartile now displayed a lower survival probability than the 50–75% quartile.
Thus, across all four panels, both European and non-European cities in the lowest
quartile of temperature anomalies consistently showed the highest survival probability,
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indicating that minimal climate anomalies were associated with lower GCoM participa-
tion. This was corroborated by the log-rank test results.
Among European cities experiencing the lowest GHCN anomalies, there were 84 ob-
served memberships compared to 139 expected (χ2 = 32, p<0.001), while UTCI anomalies
showed 79 observed versus 141 expected (χ2 = 46.8, p<0.001). Similarly, global cities
experiencing the lowest GHCN anomalies recorded 91 observed memberships against
161 expected (χ2 = 139, p<0.001), and those with low UTCI anomalies had 116 observed
compared to 157 expected (χ2 = 62.4, p<0.001). Hence, cities experiencing the lowest
anomalies were slower in joining the GCoM across the global and European subset.
In contrast, among European cities, those in the highest GHCN anomaly quartile
(75–100%) recorded 153 observed versus 129 expected memberships, while the middle
quartiles (25–50% and 50–75%) exhibited smaller deviations, indicating a more balanced
distribution between expected and observed values. Regarding UTCI anomalies, the
effect was weaker, with the 75–100% quartile nearly balanced (132 observed vs. 131
expected), whereas the cities in the 50–75% quartile showed stronger participation (153
observed vs. 113 expected). Among global cities, those in the 50–75% quartile (279
observed versus 155 expected) had the strongest association with faster GCoM partici-
pation, while those in the 75–100% quartile (133 observed versus 154 expected) showed
a weaker link. Regarding UTCI anomalies, global cities in the highest quartile (237
observed versus 153 expected) had earlier membership, whereas those in the 50–75%
quartile had fewer memberships than expected (139 observed versus 153 expected).
Overall, this suggested differences in participation trends between the 50–75% and
75–100% quantiles depending on whether UTCI or GHCN data were used for both
European and global cities. Nonetheless, while it could not be definitively concluded
that cities with the highest anomalies had lower survival probabilities, these results
consistently indicated that cities experiencing the lowest anomalies were slower in
joining the GCoM.

To further examine whether there were significant differences in the survival trajectories
of cities affected by weather-related disasters, Figure 4.11 presents Kaplan-Meier sur-
vival curves for European (top panel) and non-European (bottom panel) urban centers,
divided into quartiles reflecting the number of disasters experienced from 2000 to 2024.
The curves show that European urban centers within the 25–50% quartile experienced the
steepest decline in survival probability. Conversely, those in the lowest quartile (0–25%)
maintained the highest survival probability throughout their time at risk. Cities in the
50–75% and 75–100% quantiles followed similar survival trajectories, positioned between
the lowest and the second quartiles. Regarding global urban centers, those within the
lowest quantile (0–25%) exhibited the fastest decline in survival probability, while those
in the 50–75% and 75–100% quantiles maintained a higher survival probability.
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These results indicated that global cities with lower disaster exposure tended to join ear-
lier, whereas in Europe, moderate disaster exposure was more closely associated with
early participation. The results of the log-rank test supported this pattern. For global
cities (χ2 = 144, p< 0.001), those in the lowest disaster quartile (0–25%) had 254 observed
versus 159 expected memberships, suggesting faster participation, while higher quartiles
(50–75% and 75–100%) showed a slower rate. In Europe (χ2= 34.9, p< 0.001), cities within
the 25–50% quartile (153 observed versus 106 expected) had the highest participation rate,
whereas those in the highest quartile (75–100%) had fewer observed memberships (107
versus 126 expected). Thus, at first glance, this does not suggest associations between
higher disaster frequencies and GCoM participation.

FIGURE 4.11: Kaplan-Meier Survival Curves for European & Global (excl.
Europe) Urban Centres in GHS Sample, by Anomaly Quartiles

4.2.2 Baseline Estimation

Before examining the influence of the exposure measures on the hazard of urban centres
joining the Global Covenant of Mayors (GCoM), the explanatory power of the factors
identified in the literature was explored. This analysis was conducted separately for
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European and non-European cities. The results of the discrete time survival models are
presented in Table 4.1, with standard errors in parentheses. All models included time at
risk as a fixed effect, while Models 3 and 6 incorporated Conley standard errors with a
500 km cutoff to adjust for spatial autocorrelation. Furthermore, Model 1 was estimated
without regional fixed effects, whereas Model 4 included fixed effects at the continent
level. Country-fixed effects were subsequently added for Models 2, 3, 5, and 6.

TABLE 4.1: Estimation of the Effect of Control Variables on the Logit Haz-
ard of City Participation in the GCoM

European Urban Centres Global Urban Centres (excl. Europe)

(1) (2) (3) (4) (5) (6)

LECZ % -0.001 -0.005 ** -0.005 *** -0.000 0.000 0.000

(0.002) (0.003) (0.002) (0.002) (0.002) (0.002)

No. Endangered Species 0.067 *** 0.006 0.006 0.003 *** 0.002 ** 0.002 *

(0.007) (0.010) (0.014) (0.001) (0.001) (0.001)

Log Industrial Co2/capita -0.227 *** -0.143 ** -0.143 ** -0.213 *** -0.052 -0.052

(0.059) (0.057) (0.058) (0.041) (0.066) (0.071)

Log PM25 concentration -0.172 0.382 0.382 -0.482 *** -0.419 *** -0.419 ***

(0.185) (0.314) (0.400) (0.090) (0.128) (0.134)

Log HDI 2015 0.209 4.591 ** 4.591 * 1.525 *** 1.002 1.002

(0.756) (2.339) (2.578) (0.387) (0.660) (0.840)

Log Area (km2) 0.416 *** 0.846 *** 0.846 *** 1.037 *** 1.157 *** 1.157 ***

(0.071) (0.079) (0.141) (0.046) (0.064) (0.060)

Log Mins. to Capital -0.087 *** 0.023 0.023 -0.081 *** 0.022 0.022

(0.021) (0.026) (0.034) (0.018) (0.024) (0.028)

N 21879 21879 21879 189455 189455 189455

No. Cities 1006 1006 1006 10338 10338 10338

No. Periods 33 33 33 19 19 19

Region Fixed Effect - Country Country Continent Country Country

Conley Cut-Off - - 500 km - - 500 km

McFadden R2 0.117 0.211 0.211 0.245 0.304 0.304

AIC 4215.673 3771.448 3771.448 6329.399 5833.873 5833.873

*** p < 0.01; ** p < 0.05; * p < 0.1.

The results for European urban centres (Models 1 to 3) indicated that the percentage
of an area in a low-elevation coastal zone was negatively associated with joining the
GCoM when country-fixed effects were included (Models 2 and 3). This aligned with
the findings from Reckien, Flacke, Olazabal and Heidrich (2015), although the effect size
was small (-0.005). Regarding the number of endangered species, the coefficient initially
showed a significant positive association with participation in Model 1 (0.067, p<0.01).
However, this significance disappeared once country-fixed effects were introduced. This
could have meant that country-level factors drove the effect, or that within-country
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variation was too small and absorbed by the fixed effects. Moreover, higher industrial
CO2 emissions per capita appeared to be significantly negatively correlated with GCoM
participation across all models (-0.227, p<0.01; -0.143, p<0.05; -0.143, p<0.05). This
aligned with previous findings from Zahran, Brody, Vedlitz, Grover and Miller (2008a),
which stated that cities with a high reliance on carbon-intensive industries were more
averse to climate action. In contrast, regarding PM2.5 concentration, no clear link be-
tween air pollution levels and GCoM membership was found. More notably, the estimate
for HDI demonstrated a significant positive association with GCoM membership once
country-fixed effects were included (Models 2 and 3: 4.591, p<0.05), indicating that cities
in more developed areas of a country were more likely to join. However, this finding
was unexpected, as the estimate did not appear significant in the model without fixed
effects, which would have in turn suggested a stronger association with participation
when comparing cities across different countries rather than within them. Conversely,
city area size showed a consistently strong and significant positive association across all
models, with estimates ranging from 0.416 to 0.846 (p<0.01), providing further evidence
that larger urban centres were more inclined to take climate action. Finally, the effect
of distance to the capital was small and negative in Model 1 (-0.087, p<0.1), implying
that being further away from the capital negatively influenced participation. However,
this effect became insignificant when country-fixed effects were applied, suggesting that
national-level factors better explained variations in participation.
Turning to Models 4 to 6, which present the findings for non-European cities, similarities
between the two groups emerged, particularly in the persistent significance of city area
size, with larger cities consistently more inclined to join the GCoM across all estimations
(1.037, p<0.01; 1.157, p<0.01; 1.157, p<0.01). Furthermore, the initial significance of
the estimate for distance to the capital in Model 4 (-0.081, p<0.01) disappeared once
country-fixed effects were included, similar to the findings for European cities. However,
some patterns diverged, with the percentage of city area within a LECZ showing no as-
sociation with GCoM participation across all three models. Moreover, while the estimate
for PM2.5 concentration showed no significant effect for European cities, it appeared
significantly negatively associated with GCoM participation for global urban centres in
Models 4, 5, and 6 (-0.482, p<0.05; -0.419, p<0.01), suggesting that higher air pollution
levels may have discouraged participation. Additionally, industrial CO2 emissions per
capita initially appeared negatively associated in Model 4 (-0.213, p<0.05), but the coeffi-
cient became insignificant once country-fixed effects were applied. This suggested that
this factor had weaker explanatory power for global network participation compared
to its influence on European participation. Another key difference from the European
models was that the level of HDI was initially positively associated with membership
in Model 4 (1.525, p<0.01) but lost significance in Models 5 and 6 after accounting for
country-fixed effects. This did not necessarily imply that HDI had no effect on network
participation; rather, it suggested that country-fixed effects may have absorbed the
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effect due to high within-country correlation. Finally, a consistent finding across all
specifications, which was not observed for European cities, was the number of threat-
ened species. This factor was positively linked to GCoM membership in Models 4 to
6, although the estimate remained close to zero (0.002, p<0.01; 0.003, p<0.05; 0.003, p<0.1).

Regarding model performance, including country-fixed effects significantly improved
model fit: McFadden’s R! increased from 0.117 to 0.211 in the European models and from
0.245 to 0.304 in the global models, while AIC values also decreased substantially. Given
that a McFadden R! between 0.2 and 0.4 is considered a good fit (McFadden, 1974), the
analysis proceeded with the inclusion of country-fixed effects. Additionally, model per-
formance suggested that the control variables had good explanatory power, and variance
inflation factors indicated no endogeneity problems due to correlation (see Appendix C).
Moreover, the sensitivity of estimates to adjustments using Conley standard errors was
moderate (e.g., shifts in the significance level for LECZ and HDI in the European sub-
sets and the number of endangered species in the global subset). Nonetheless, given the
spatial correlation in the exposure measures and the dependent variable (see results of
Moran’s I in Appendix C), their inclusion remained justified. Therefore, all subsequent
models retained time at risk as a fixed effect, included all control variables presented
here, incorporated country-fixed effects, and addressed potential spatial autocorrelation
in the residuals using Conley standard errors with a 500 km cut-off. Finally, Models 3
and 6 were used as baseline comparisons for subsequent models regarding the European
and non-European city subsets, respectively.

4.2.3 Considering Temperature Anomalies and Shocks

The specifications presented in this subsection were applied to test for the effect of tem-
perature anomalies and shocks on the logit hazard of European and non-European cities
GCoM participation. First, the results are displayed for immediate effects (Table 4.2),
then for delayed effects incorporating a one-period lag (Table 4.3), and finally for more
persistent effects using the exposure measures’ six- and twelve-season moving averages
(Table 4.4).
The results presented in Table 4.2 revealed that, considering the European subset
(Models 1 to 6), climate anomalies and shocks had little to no significant immediate
effect on city-level GCoM participation. This held for crude GHCN and UTCI anomalies,
disaggregated positive GHCN anomalies, positive and negative UTCI anomalies, the
number of heat and cold shocks, and the number of heat spells. Moreover, Models
1 to 5 yielded a lower AIC than the baseline, suggesting that including the exposure
variables did not enhance model fit. The only weak significant effects on participation
were observed for negative GHCN anomalies in Model 3 (0.259, p<0.10) and the number
of cold UTCI spells (-0.059, p<0.10), with the latter resulting in a slight reduction in
AIC. Nonetheless, while these estimates reached significance at the 10 percent level,
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TABLE 4.2: Estimation of the Immediate Effect of Temperature Anomalies
and Shocks on the Logit Hazard of City Participation in the GCoM

European Urban Centres Global Urban Centres (excl. Europe)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Anomaly GHCN -0.171 0.297 ***

(0.109) (0.106)

Anomaly UTCI -0.049 0.133 *

(0.083) (0.069)

Anomaly GHCN (+) -0.127 0.257 **

(0.192) (0.110)

Anomaly GHCN (-) 0.259 * -0.677

(0.148) (0.476)

Anomaly UTCI (+) -0.077 0.090

(0.122) (0.082)

Anomaly UTCI (-) -0.031 -0.372

(0.164) (0.288)

No. Heat Shocks UTCI -0.012 -0.001

(0.011) (0.004)

No. Cold Shocks UTCI 0.000 -0.000

(0.002) (0.001)

No. Heat Spells UTCI -0.058 -0.002

(0.059) (0.025)

No. Cold Spells UTCI -0.059 * 0.023

(0.035) (0.027)

N 21879 21879 21879 21879 21879 21879 189455 189455 189455 189455 189455 189455

No. Cities 1006 1006 1006 1006 1006 1006 10338 10338 10338 10338 10338 10338

No. Periods 33 33 33 33 33 33 19 19 19 19 19 19

Region Fixed Effect Country Country Country Country Country Country Country Country Country Country Country Country

Conley Cut-Off 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km

McFadden R2 0.211 0.210 0.210 0.210 0.210 0.211 0.305 0.304 0.305 0.304 0.304 0.304

AIC 3770.804 3772.733 3772.619 3774.424 3773.378 3768.427 5824.283 5831.190 5825.532 5832.180 5837.726 5836.911

*** p < 0.01; ** p < 0.05; * p < 0.1.

no consistent pattern emerged across multiple exposure variables, questioning the
robustness of the findings. For instance, if there were a meaningful, immediate effect
of colder-than-baseline conditions discouraging participation, this would have been
reflected at least in the number of cold shocks or negative GHCN and UTCI anomalies.
In contrast, the discrete-time survival estimations for the global urban centre subset
(excluding Europe) in Models 7 and 8 showed a significant association between higher
seasonal GHCN (0.297, p<0.01) and UTCI anomalies (0.113, p<0.1) and an increased
hazard of GCoM participation. Moreover, when disaggregating GHCN anomalies into
positive and negative deviations (Model 9), positive anomalies remained significant
(0.257, p<0.01), which suggested that the effect observed in Model 7 was driven by
them. These estimations further showed an improvement in model fit, as indicated by
a slightly lower AIC, confirming that exposure variables contributed to the explanatory
power. As for the disaggregated positive and negative estimates for UTCI anomalies in
Model 10, none were significant, potentially suggesting that the effect in Model 8 was
not caused by a specific type of anomaly. Finally, the results for the number of UTCI
shocks and spells presented in Models 11 and 12 presented no statistically significant
effect on GCoM participation and further resulted in a higher AIC, indicating a weaker
fit compared to the baseline. Nonetheless, despite the estimation for disaggregated
UTCI anomalies not clarifying which anomalies drove the effect observed in Model 8,
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and models considering shocks and spells showing no significant impact, the findings
provided some indication that warmer-than-average conditions may directly influence
GCoM participation for global cities across three exposure measures. Thus, this result
was further tested for robustness by applying inverse probability weights in the analysis
in section 4.1.

Furthermore, the bureaucratic process of joining the GCoM, alongside with the time re-
quired for a city’s decision-making after a shock, could delay GCoM membership. There-
fore, the results in Table 4.3 present the estimations on the impact of temperature anoma-
lies and shocks on the hazard of GCoM participation, with a one-period lag.

TABLE 4.3: Estimation of the Delayed Effect (1 Lag) of Temperature
Anomalies and Shocks on the Logit Hazard of City Participation in the

GCoM

European Urban Centres Global Urban Centres (excl. Europe)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Anomaly GHCN -0.090 -0.079

(0.078) (0.150)

Anomaly UTCI -0.085 * -0.132

(0.045) (0.109)

Anomaly GHCN (+) -0.087 0.120

(0.124) (0.159)

Anomaly GHCN (-) 0.097 0.730 ***

(0.246) (0.236)

Anomaly UTCI (+) -0.115 *** 0.033

(0.031) (0.128)

Anomaly UTCI (-) -0.006 0.512 ***

(0.216) (0.142)

No. Heat Shocks UTCI -0.010 0.007

(0.007) (0.005)

No. Cold Shocks UTCI 0.002 0.004 ***

(0.003) (0.001)

No. Heat Spells UTCI -0.052 0.045 *

(0.043) (0.025)

No. Cold Spells UTCI -0.002 0.070 ***

(0.032) (0.019)

N 21879 21879 21879 21879 21879 21879 189455 189455 189455 189455 189455 189455

No. Cities 1006 1006 1006 1006 1006 1006 10338 10338 10338 10338 10338 10338

No. Periods 33 33 33 33 33 33 19 19 19 19 19 19

Region Fixed Effect Country Country Country Country Country Country Country Country Country Country Country Country

Conley Cut-Off 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km

McFadden R2 0.210 0.210 0.210 0.210 0.210 0.210 0.304 0.304 0.305 0.305 0.305 0.305

AIC 3772.845 3771.722 3774.844 3773.410 3773.267 3774.117 5835.046 5831.438 5828.074 5825.934 5825.175 5826.797

*** p < 0.01; ** p < 0.05; * p < 0.1.

Regarding the models for European cities (Models 1 to 6), the results indicated that
higher UTCI anomalies in the previous season decreased the likelihood of GCoM
participation (-0.085, p<0.1), which was primarily driven by a negative effect of pos-
itive UTCI anomalies (-0.115, p<0.01). However, the higher AICs in both estimations
demonstrated a weaker model fit than the baseline model, suggesting that this finding
was rather spurious, warranting cautious interpretation. Moreover, this finding was not
reinforced by crude or disaggregated GHCN anomalies or heat shocks and spells, which
all remained insignificantly associated, suggesting no discernable pattern in lagged
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temperature anomalies and shocks on European GCoM participation.
Turning to the results for global urban centres presented in Models 7 to 12, the one-
period lag models revealed a shift in dynamics compared to the findings in Table 4.2,
where colder-than-average conditions in the previous season appeared to significantly
increase the likelihood of GCoM participation, as opposed to warming. Negative GHCN
anomalies (0.730, p <0.01) and negative UTCI anomalies (0.512, p< 0.01) both showed
strong positive effects, while the presence of more cold shocks (0.004, p <0.01) and
cold spells (0.070, p<0.01) were linked to higher participation. These estimations also
had lower AIC values than the baseline, suggesting that past-season negative climate
anomalies and shocks contributed to the explanatory power. To see if these findings
hold, it was warranted that they should be tested further for robustness by adjusting for
confounding factors. A weak positive association was also found for heat spells (0.045,
p<0.1) in Model 12. However, this finding was not reinforced across other specifications,
calling into question its robustness.

Recognizing that single climate events may not be sufficient to drive urban climate ac-
tion since they may be attributed to natural variability rather than climate change, the
estimations were also run incorporating the six and twelve-season moving averages of
the exposure measures. These results are presented in Table 4.4.
Considering the subsample of European cities, the estimations for the six-period moving
averages showed no significant effect, at first indicating no influence of persistent tem-
perature anomalies and shocks on their network participation. However, over a twelve-
season horizon, the results shifted. Higher levels of GHCN anomalies now revealed a sig-
nificant association with GCoM membership (2.611, p<0.01). Moreover, when disaggre-
gated, positive anomalies remained significant (2.495, p<0.01), while negative anomalies
appeared with a negative effect (-2.875, p<0.05). These results were partially reinforced
when looking at UTCI anomalies, with overall crude anomalies being positively associ-
ated with participation (0.798, p<0.05), while negative anomalies significantly reduce the
likelihood of joining (-3.058, p<0.01). However, there was no significant effect for positive
UTCI anomalies. The models’ fit (Model 1 to 4 considering the twelve-period moving av-
erages) also suggested more substantial explanatory power, with lower AIC values com-
pared to both the baseline and the six-period moving average models, and higher Mc-
Fadden R!. That said, the estimations on shocks and spells revealed no significant effects,
with weaker model fits compared to the baseline. Nonetheless, the findings suggested
across multiple specifications that European cities experiencing prolonged warming are
more likely to join the GCoM, whereas those with prolonged cooling are less inclined to
participate. However, this is only the case when long-term trends over twelve seasons
are considered, with no impact from shorter six-season trends. The robustness of these
findings was further evaluated after adjusting for confounding in section 4.1.



4.2. Survival Analysis 47

TABLE 4.4: Estimation of the Effect of Temperature Anomalies and Shocks
(6 & 12 Period Moving Averages) on the Logit Hazard of City Participation

in the GCoM

European Urban Centres Global Urban Centres (excl. Europe)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

6 Period Moving Average

Anomaly GHCN 0.671 -0.013

(0.493) (0.338)

Anomaly UTCI 0.017 -0.431 **

(0.330) (0.192)

Anomaly GHCN (+) 0.672 1.241 ***

(0.587) (0.379)

Anomaly GHCN (-) -0.669 2.594 ***

(0.925) (0.482)

Anomaly UTCI (+) -0.296 0.059

(0.331) (0.247)

Anomaly UTCI (-) -1.110 1.162 ***

(0.839) (0.257)

No. Heat Shocks UTCI -0.020 0.004

(0.038) (0.009)

No. Cold Shocks UTCI 0.001 0.008 ***

(0.007) (0.002)

No. Heat Spells UTCI -0.173 -0.002

(0.154) (0.058)

No. Cold Spells UTCI -0.078 0.132 **

(0.083) (0.056)

McFadden R2 0.211 0.210 0.211 0.211 0.210 0.211 0.304 0.305 0.308 0.306 0.305 0.304

AIC 3768.871 3773.438 3770.871 3769.579 3774.542 3770.922 5835.868 5824.164 5798.276 5816.593 5829.161 5830.399

12 Period Moving Average

Anomaly GHCN 2.611 *** 0.470

(0.782) (0.399)

Anomaly UTCI 0.798 ** -0.459 *

(0.396) (0.248)

Anomaly GHCN (+) 2.495 *** 1.201 **

(0.874) (0.558)

Anomaly GHCN (-) -2.875 ** 1.355

(1.310) (0.855)

Anomaly UTCI (+) -0.025 -0.084

(0.454) (0.370)

Anomaly UTCI (-) -3.058 *** 1.180 ***

(0.916) (0.433)

No. Heat Shocks UTCI 0.031 -0.001

(0.066) (0.012)

No. Cold Shocks UTCI 0.000 0.007 ***

(0.007) (0.002)

No. Heat Spells UTCI -0.070 0.006

(0.276) (0.080)

No. Cold Spells UTCI -0.049 0.143 **

(0.107) (0.061)

McFadden R2 0.215 0.212 0.215 0.215 0.210 0.210 0.304 0.304 0.305 0.305 0.305 0.304

AIC 3747.879 3762.810 3749.789 3750.518 3774.412 3774.703 5834.003 5831.182 5826.691 5828.932 5829.319 5830.007

N 21879 21879 21879 21879 21879 21879 189455 189455 189455 189455 189455 189455

No. Cities 1006 1006 1006 1006 1006 1006 10338 10338 10338 10338 10338 10338

No. Periods 33 33 33 33 33 33 19 19 19 19 19 19

Region Fixed Effect Country Country Country Country Country Country Country Country Country Country Country Country

Conley Cut-Off 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km

*** p < 0.01; ** p < 0.05; * p < 0.1.
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As for the subsample considering global urban centres (Models 7 to 12), the trends re-
garding colder-than-average conditions presented in the one-lagged models in Table 4.3
were reinforced when considering longer timeframes. Higher UTCI anomalies were
linked to lower GCoM participation, considering the six-season moving average (-0.431,
p<0.05) and the twelve-season moving average (1.180, p<0.01). Moreover, this was pri-
marily driven by the significant and positive effect of negative UTCI anomalies in both
time horizons. The six-season moving average of negative GHCN anomalies was also
positively associated with GCoM participation (2.594, p<0.01), although the estimate lost
significance when considering twelve seasons. Additionally, experiencing more cold
shocks (six seasons: 0.008, p<0.01; twelve seasons: 0.007, p<0.01) and cold spells (six
seasons: 0.132, p<0.05; twelve seasons: 0.143, p<0.05) was positively correlated with join-
ing the GCoM. All in all, this suggested that prolonged cold conditions are consistently
positively linked to GCoM participation outside of Europe. Moreover, the model fit im-
proved to the baseline across Models 8 to 12, with the strongest enhancement seen in
Model 9, which accounted for disaggregated temperature anomalies. Another finding
was that sustained warmer-than-baseline temperatures also showed correlation, at least
when considering GHCN anomalies. While overall temperature anomalies remained in-
significant, disaggregated anomalies showed a significant effect for positive anomalies
(1.241, p<0.01), considering the six-season moving average. Similarly, considering twelve
seasons, positive anomalies retained a significant association with participation (1.201,
p<0.01), whereas negative anomalies lost significance compared to the six-season mod-
els. Despite other exposure measures not confirming this finding, its persistence across
both timeframes, along with the twelve-season model considering disaggregated GHCN
anomalies (Model 9) having the best model fit, suggested it cannot be easily dismissed.
Thus, this finding was tested for robustness while accounting for potential confounders
alongside the result of the strong positive influence of colder-than-average conditions.

4.2.4 Considering Weather-Related Natural Disasters

Having examined the impacts of temperature anomalies and shocks, this subsection
presents the results from the discrete-time survival models estimating the effects of
weather-related disaster occurrences and fatalities on the logit hazard of urban centres’
GCoM participation. The analysis follows the same structure as before, first displaying
the findings for immediate effects (Table 4.5), then delayed effects (Table 4.6), and finally
longer-term exposure using six- and twelve-season moving averages (Table 4.7).

The results regarding European cities, presented in Models 1 to 4 in Table 4.5 indicated,
on one hand, no significant influence of crude weather-related disasters or their associ-
ated fatalities on GCoM participation. On the other hand, the occurrence of hydrological
disasters (-0.619, p<0.05) and deaths (-0.422, p<0.01) appeared to hinder participation in
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the same season. This could suggest that flood events are not directly perceived as stem-
ming from climate change or are disruptive, which may delay participation decisions.
Hence, due to the persistence across both measures, this finding was further considered
in the subsequent analysis. Additionally, climatological disaster-related deaths had a
strong negative impact, with a large estimate (-10.280, p<0.01). However, the effect size
called into question the robustness of the finding, as this would translate to an increase
in the logarithm of fatalities from climatological disasters of 1, decreasing the odds of
participation by 99.997% (Odds ratio: 3.431027e-05). As this meant GCoM participation
becoming nearly impossible when experiencing deaths from a climatological disaster,
which lacks practicality, and given that odds ratios this high are unlikely and often ex-
plained by underlying issues in the estimation, the interpretation of this result should be
cautioned. Since climatological disasters are rare and spatially clustered events, it is more
likely that this resulted in overfitting or near-perfect separation in the estimation process.

TABLE 4.5: Estimation of the Immediate Effect of Weather-Related Disaster
Occurrence and Deaths on the Logit Hazard of City Participation in the

GCoM

European Urban Centres Global Urban Centres (excl. Europe)

(1) (2) (3) (4) (5) (6) (7) (8)

No. Disasters -0.057 -0.153 *
(0.099) (0.078)

No. Climatological Disasters -0.638 0.365
(0.755) (0.314)

No. Meteorological Disasters 0.126 -0.227 **
(0.120) (0.115)

No. Hydrological Disasters -0.619 ** -0.029
(0.282) (0.142)

Log Mean Disaster Deaths 0.003 -0.033
(0.052) (0.056)

Log Mean Climatological Deaths -10.280 *** 0.442 **
(0.366) (0.185)

Log Mean Meteorological Deaths 0.065 0.018
(0.042) (0.075)

Log Mean Hydrological Deaths -0.422 *** -0.112 **
(0.111) (0.057)

N 21373 21373 19663 19663 179737 179737 167305 167305
No. Cities 1006 1006 930 930 10338 10338 9601 9601
No. Periods 32 32 32 32 18 18 18 18
Region Fixed Effect Country Country Country Country Country Country Country Country
Conley Cut-Off 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km
McFadden R2 0.208 0.209 0.205 0.207 0.302 0.302 0.301 0.302
AIC 3757.175 3755.069 3517.424 3510.488 5770.308 5769.905 5243.852 5239.418

*** p < 0.01; ** p < 0.05; * p < 0.1.

As for the results considering the global subset (Models 5 to 8), a weak significant
negative effect (-0.153, p<0.1) was found for disaster occurrence on participation,
which was primarily driven by the number of meteorological disasters (-0.227, p<0.05).
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Furthermore, hydrological deaths had a significant negative effect (-0.112, p<0.05),
while the logarithm of climatological deaths appeared positively associated to GCoM
participation. Although this initially implied that cities experiencing more fatalities
from droughts or wildfires were more likely to join the GCoM in the same season, while
floods acted as a barrier, it is important to consider that climatological disasters are rare
events. As demonstrated in the European subset, findings related to this measure should
be interpreted with caution. Moreover, the findings on disaster occurrences did not align
with those on disaster-related fatalities and vice versa, making it difficult to identify clear
patterns. While the overall number of disasters was significantly associated with GCoM
participation, the number of fatalities was not. Similarly, meteorological disasters were
shown to be significant predictors, but their associated death tolls were not. In contrast,
hydrological disasters showed a significant effect when considering fatalities but not
when looking at their overall frequency. The same was observed for climatological
disasters, where related deaths appeared significant, but the total number of events did
not. Given these inconsistencies and sensitivities in the estimates, no further testing was
conducted, although this doesn’t mean that the results are invalid.

Furthermore, to account for potential delays when experiencing disasters that may
influence the timing of GCoM participation, the results for the one-period lag effects are
presented in Table 4.6.
Considering European cities, as with the estimations testing for immediate effects,
overall disasters from the previous season showed no statistically significant effect
on GCoM participation. However, when disaggregated by disaster type, only lagged
climatological disasters exhibited a weakly significant positive association (0.490,
p<0.1). However, as seen in the estimates regarding immediate effects, all conclusions
about climatological disasters should be cautioned. Concerning fatalities from natural
disasters, only the overall measure showed a significant negative effect (-0.033, p<0.01).
Conversely, fatalities by disaster type revealed no significant influence, suggesting that
no specific category of disasters influenced this result. Nonetheless, the low AIC in
comparison to Models 1,2, and 4 suggested that much explanatory power was added,
thus this result was considered in further testing.
Turning toward the results for the global sample, across Models 5 to 8, none of the
estimates were statistically significant, and all models exhibited higher AIC values
compared to those considering immediate effects, indicating a poorer model fit. There-
fore, weather-related disasters in the previous season did not appear to drive GCoM
participation for global cities.
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TABLE 4.6: Estimation of the Delayed Effect (1 Lag) of Weather-Related
Disaster Occurrence and Deaths on the Logit Hazard of City Participation

in the GCoM

European Urban Centres Global Urban Centres (excl. Europe)

(1) (2) (3) (4) (5) (6) (7) (8)

No. Disasters 0.020 -0.107
(0.046) (0.073)

No. Climatological Disasters 0.490 * 0.339
(0.251) (0.450)

No. Meteorological Disasters 0.036 -0.174
(0.098) (0.108)

No. Hydrological Disasters -0.195 0.026
(0.246) (0.129)

Log Mean Disaster Deaths -0.033 *** -0.014
(0.010) (0.041)

Log Mean Climatological Deaths -0.054 0.216
(0.736) (0.213)

Log Mean Meteorological Deaths -0.016 -0.066
(0.023) (0.045)

Log Mean Hydrological Deaths -0.145 0.034
(0.092) (0.053)

N 21373 21373 19663 19663 179737 179737 167305 167305
No. Cities 1006 1006 930 930 10338 10338 9601 9601
No. Periods 32 32 32 32 18 18 18 18
Region Fixed Effect Country Country Country Country Country Country Country Country
Conley Cut-Off 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km
McFadden R2 0.208 0.208 0.205 0.205 0.302 0.302 0.301 0.301
AIC 3757.380 3759.553 3517.073 3520.435 5773.221 5773.973 5244.255 5245.973

*** p < 0.01; ** p < 0.05; * p < 0.1.

To further evaluate the more persistent effects over longer time horizons, Table 4.7.
presents the impacts of weather-related disaster exposure on the hazard of GCoM partic-
ipation, incorporating six- and twelve-season moving averages for all disaster measures.
Turning to European urban centres, the models incorporating six-season moving aver-
ages revealed some notable patterns. Both the total number of disasters (0.804, p<0.05)
and the logarithm of average disaster-related fatalities (0.124, p<0.05) were significantly
associated with an increased likelihood of GCoM participation. Models 2 and 4 fur-
ther revealed that this effect primarily stemmed from meteorological disasters, as ev-
idenced by the strong positive associations with the number of disasters experienced
(1.504, p<0.01) and the logarithm of associated deaths (0.157, p <0.01). This implied that
cities experiencing more meteorological disasters (i.e., extreme temperature events and
storms) over a longer time horizon were more likely to join the GCoM. Conversely, hydro-
logical and climatological disasters showed no significant influence, while fatalities from
hydrological disasters was observed to negatively affect participation (-0.348, p<0.05).
These findings were reinforced when turning to the estimates for twelve-season moving
averages, with the occurrence of disasters (1.032, p<0.10) and disaster-related fatalities
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(0.078, p<0.10) continuing to show a positive association with GCoM participation. This
effect was again primarily caused by meteorological disasters (2.640, p<0.01) and related
fatalities (0.096, p<0.05). Moreover, hydrological disasters exhibited a significant nega-
tive effect (-2.427, p<0.01), and hydrological deaths also showed a negative association
(-0.396, p<0.10), reinforcing the previous findings that exposure to floods may present a
barrier for European cities to participate in the GCoM. In addition, the lower AIC scores
in all eight models suggested a better model fit, when considering longer time horizons,
than those considering immediate and lagged effects. Thus, these results indicated that
while cities impacted by recurring storms and extreme weather seek out network mem-
bership, those experiencing repeated flooding may be less inclined. The robustness of
these findings was further examined while considering selection bias in the subsequent
analysis.
Moreover, considering global urban centres, the results presented in Models 5 to 8 for the
estimates averaged over six periods differed significantly from the European findings.
Neither the occurrence nor fatalities from overall, meteorological, or hydrological disas-
ters showed a significant association with GCoM participation. Conversely, climatolog-
ical disasters appeared with a strong negative estimate (-2.892, p<0.05). This remained
consistent when using twelve-season moving averages, with climatological disasters (-
5.575, p<0.01). However, as was the case for the European subset when estimating im-
mediate effects (Table 4.5), the large estimate (-5.575) translated into a 99.6% decrease in
the odds of cities adhering to the GCoM (Odds ratio = 0.003789703) with an increase of
1, which was a highly unlikely effect size. This reinforced the notion that any interpre-
tation of the estimations concerning climatological disasters should be cautious, hence
why this finding was dismissed in the subsequent analysis. Finally, no significant asso-
ciations were found for other disaster types or total disaster occurrences, implying that
other persistent disasters did not influence GCoM participation in non-European cities.
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TABLE 4.7: Estimation of the Weather-Related Disaster Occurrence and
Deaths (6 & 12 Period Moving Averages) on the Logit Hazard of City Par-

ticipation in the GCoM

European Urban Centres Global Urban Centres (excl. Europe)

(1) (2) (3) (4) (5) (6) (7) (8)

6 Period Moving Average

No. Disasters 0.804 ** -0.058
(0.316) (0.166)

No. Climatological Disasters -0.681 -2.892 **
(1.114) (1.385)

No. Meteorological Disasters 1.504 *** -0.136
(0.498) (0.185)

No. Hydrological Disasters -0.406 0.087
(0.550) (0.320)

Log Mean Disaster Deaths 0.124 ** -0.025
(0.052) (0.052)

Log Mean Climatological Deaths -0.010 0.070
(0.349) (0.384)

Log Mean Meteorological Deaths 0.157 *** -0.056
(0.050) (0.082)

Log Mean Hydrological Deaths -0.348 ** 0.019
(0.150) (0.044)

McFadden R2 0.210 0.211 0.207 0.208 0.302 0.302 0.301 0.301
AIC 3750.336 3745.495 3509.210 3503.651 5775.866 5771.797 5244.053 5247.163

12 Period Moving Average

No. Disasters 1.032 * -0.283
(0.599) (0.186)

No. Climatological Disasters 2.372 -5.575 ***
(2.652) (1.782)

No. Meteorological Disasters 2.640 *** -0.303
(0.798) (0.207)

No. Hydrological Disasters -2.427 *** -0.479
(0.940) (0.535)

Log Mean Disaster Deaths 0.078 * -0.061
(0.043) (0.066)

Log Mean Climatological Deaths 0.269 -0.071
(0.466) (0.392)

Log Mean Meteorological Deaths 0.096 ** 0.046
(0.041) (0.101)

Log Mean Hydrological Deaths -0.396 * -0.070
(0.211) (0.054)

McFadden R2 0.210 0.214 0.206 0.207 0.302 0.304 0.301 0.301
AIC 3751.389 3728.426 3513.881 3510.768 5769.391 5759.131 5243.008 5245.990

N 21373 21373 19663 19663 179737 179737 167305 167305
No. Cities 1006 1006 930 930 10338 10338 9601 9601
No. Periods 32 32 32 32 18 18 18 18
Region Fixed Effect Country Country Country Country Country Country Country Country
Conley Cut-Off 500 km 500 km 500 km 500 km 500 km 500 km 500 km 500 km

*** p < 0.01; ** p < 0.05; * p < 0.1.
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4.2.5 Adjusting for Confounding

The descriptive analysis in Chapter 4.1 revealed regional differences in exposure, with
cities in the Global North experiencing higher temperature anomalies than those in
the Global South. Furthermore, it was shown that disaster occurrence was spatially
clustered, with some regions being more affected than others. This raised concerns about
selection bias, as regions in the Global North, where anomalies were more pronounced,
tend to be more affluent than those in the Global South (Thomas-Slayter, 2003). Thus,
those may have also been more likely to join the GCoM, as findings from Nohrstedt,
Hileman, Mazzoleni et al. (2022) and Zahran, Grover, Brody and Vedlitz (2008b) sug-
gested. In addition, if cities in disaster-prone regions were systematically different
(either more resilient or less reactive), unadjusted estimates in the previous analysis may
have presented distorted effects on GCoM participation. In other words, they may have
reflected pre-existing regional differences rather than their true exposure impact. To
account for this, Inverse Probability Weighting (IPW) was applied to the findings from
the two previous subsections to correct for selection bias and isolate the independent
effect of the exposure measures on GCoM participation. By adjusting, among others, for
potential socio-economic and regional confounding, comparability between cities with
varying climate exposure was enhanced, which improved the estimates’ reliability.
The results of the estimations after implementing IPW are presented through Average
Dose-Response Functions (ADRFs). ADRFs display how the expected probability of
city-level GCoM participation varied at different binned averages of the exposure level.
Presenting the results via ADRFs for continuous treatment levels is the recommended
approach by Greifer (2025b), as the conditional estimates are biased after weighting. In
the following plots depicting ADRFs, the black line indicates the predicted probability at
various levels of binned exposure averages (blue dots). The gray area further represents
the confidence band, and the red dashed line serves as a reference for zero predicted
probability. It is important to note that unlike the conditional estimates, which isolated
the effects of the exposure measures while holding other variables constant, as presented
in the previous findings, the ADRFs provide estimates across all included covariates.
Hence, given that all cities, especially non-European ones, had a low baseline probability
of joining the GCoM, even a significant effect of the exposure variable may result in only
a small increase in the overall expected probability of participation.
That said, before presenting the results, it should be noted that not all weighted estima-
tions achieved covariate balance and that some were discarded due to methodological
constraints. As this analysis focused on inverse probability weighting methods for
continuous treatments, estimations including count variables, such as those concerning
immediate and lagged disaster occurrences and temperature shocks and spells, were
excluded. Furthermore, some estimations exhibited effective sample sizes (ESS) values
of 100 percent, which was du to the weights not reducing the effective number of
observations since they were nearly uniform across observation. This may pose no issues
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as it may indicate that confounding was minimal, hence, the covariates were already
balanced, and there may have been little need for adjustment in the first place. However,
this may also point toward an issue on the specifications of the GPS model, in which case
the adjusted results should not be used to confirm robustness and causal relationships
(Chesnaye et al., 2021). In contrast, a small ESS suggested poor model fit, indicating
differences between high- and low-exposure cities that the model struggled to balance
(Maia Polo and Vicente, 2023). Moreover, a third issue was that covariates remained
imbalanced in some cases despite weighting (i.e., the SMDs were above the absolute 0.1
threshold). Nonetheless, despite these limitations, the implementation of weights was
successful for most estimations, with the evaluation of the covariate balance achieved
through the weighting process provided in the love plots in Apendix D, which display
the Pearson correlation between the covariates and exposure measures before and after
weighting and provide the covariate with the highest SMD.

One of the findings in section 4.3 was that global cities exhibited an immediate asso-
ciation between warmer-than-average conditions and a greater likelihood of GCoM
participation when considering UTCI, GHCN, and positive GHCN anomalies. The
IPW-adjusted results for this finding are illustrated via ADRFs in Figure 4.12, with
the predicted probabilities across all binned averages of the exposure levels in the
computation of the ADRF significant at the one percent level. The weighting process
improved covariate balance and comparability among global cities, as indicated by
the shift of the correlations toward zero in the love plots, and all standardized mean
differences remaining significantly below the 0.1 threshold (see Figure D.1 in Apendix
D).
The adjusted results indicate an upward trend in all ADRFs, suggesting that higher
anomalies corresponded to a higher probability of joining. However, confidence in-
tervals widen as the anomalies increased, also reflecting greater uncertainty. Yet, they
diverge from the zero-probability line toward a higher predicted probability across all
three plots. For crude GHCN anomalies (Plot 1), cities at the lowest binned average
anomaly of -0.31°C had a 0.0123% predicted probability of joining, which increased
to 0.0230% at the highest anomaly of 1.44°C, reflecting a 0.0107 percentage point rise.
Similarly, the expected probability of GCoM participation regarding UTCI anomalies
increased from 0.0129% at -0.78°C to 0.0194% at 2.17°C, equivalent to an increase of
0.0065 percentage points (Plot 2). Considering positive GHCN anomalies, cities with
no anomaly had a predicted probability of adherence of 0.0134%, which increased to
0.0227% at 1.44°C, i.e., a rise of 0.0093 percentage points (Plot 3). Therefore, even though
the absolute increase in predicted probability was small (as anticipated given the very
low seasonal probability of joining the GCoM, especially in non-European cities), the
IPW-adjusted results supported the previous findings and provided additional evidence
for a direct effect of warmer-than-baseline conditions on GCoM participation among
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non-European cities. However, it should be kept in mind that the wide confidence
intervals indicated substantial uncertainty. Additionally, the lack of significant effects for
heat spells, heat shocks, and positive UTCI anomalies suggested that, although a valid
finding, this may not be one of the main drivers of participation.

FIGURE 4.12: Average Dose Response Functions for IPW-Adjusted Esti-
mates of Immediate Temperature Anomalies and Shocks in Global (excl.

Europe) Urban Centres

While immediate positive temperature deviations initially were found to encourage
GCoM participation in global cities, the impact of cold-related anomalies became more
pronounced when considering lagged effects. This finding was supported by the positive
significant effects of past season negative UTCI, GHCN anomalies, and the number of
cold shocks and spells. However, in this case, adjusting for confounding proved difficult.
First, the lagged effects of cold shocks and spells could not be tested due to them being
count variables. Moreover, while weighting for negative UTCI and GHCN anomalies,
the unusually high effective sample sizes of nearly 100 percent further raised concerns
(see love plots in Figure D.1 in Apendix D). The most probable reason was that seasonal
negative anomalies were less systematically related to covariates because they were
more uncommon than positive ones, appearing as external shocks. In this case, the GPS
Model had low explanatory power, even raising a negative McFadden R! (-0.02 in both
cases), indicating that the covariates did not explain the exposure well. This made the
inverse probability weights unreliable, and the results were discarded. Thus, while the
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analysis in Table 4.3 initially suggested that past season colder-than-average tempera-
tures influence GCoM participation, these findings could not be reliably reinforced by
implementing weights, which is an acknowledged limitation of this analysis.

FIGURE 4.13: Average Dose Response Functions for IPW-Adjusted Esti-
mates of Temperature Anomalies and Shocks in Global (excl. Europe) Ur-

ban Centres (6 & 12 Period Moving Averages)

The previous findings further suggested that prolonged cold conditions increased the
hazard of GCoM participation for global cities. However, sustained warming was also
found to shape participation in the long run. These findings were supported by the
significant effects of six- and twelve-season moving averages of crude and negative
UTCI anomalies, positive GHCN anomalies, the number of cold shocks and spells, and
the six-season moving average of negative GHCN anomalies. The IPW-adjusted results
from these findings are presented in Figure 4.13. It should be noted that the estimation
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for the effects of the six-period negative GHCN anomalies failed, as all weights returned
zero values, further indicating model specification issues when considering colder-than-
average conditions. Moreover, the estimations for longer-term averages of cold shocks
and spells were discarded because the estimation process failed to achieve covariate
balance, as seen in Apendix D. Despite these limitations, IPW-adjusted models for the
remaining exposure measures offered valuable insights, with all estimated probabilities
highly significant at the one percent level and all effective sample sizes exceeding 78
percent (see Figure D.1 and D.2 in Apendix D). Covariance balance was further achieved
in all cases except for the estimation of the twelve-season moving average for positive
GHCN anomalies, with the Eastern Asia covariate slightly exceeding the standardized
mean difference threshold at -0.108, as indicated in Plot 5. However, since this remained
close to the absolute 0.1 threshold and the literature suggested that an absolute 0.2
standard mean difference is in the acceptable range (Kang et al., 2022), the result was still
considered.
Regarding UTCI anomalies averaged over six seasons, the ADRF (Plot 1) showed
a downward trend, with the predicted probability of participation decreasing from
0.0214% at the lowest anomaly of -0.19°C to 0.0125% at the highest anomaly of 1.18°C,
reflecting a 0.0089 percentage point decline. Furthermore, the ADRF in Plot 3 indicated
that cities that experienced negative UTCI anomalies showed a slight increase in prob-
ability, from 0.0157% at 0°C to 0.0198% at 0.24°C, corresponding to a 0.0041 percentage
point rise. Regarding positive GHCN anomalies (Plot 2), the probability of participation
increased from 0.0137% in cities with no anomaly to 0.0298% in those with the highest
anomaly of 1.12°C, which reflected a 0.0161 percentage point increase. At first glance,
these findings appeared contradictory, as higher UTCI anomalies seemed to reduce
participation while an increase in positive GHCN anomalies exhibited the strongest
positive effect.
Considering the twelve-season time horizon, the IPW-adjusted results are shown in
Plots 4 to 6. For cities experiencing UTCI anomalies, the predicted probability remained
nearly unchanged, with those at the lower anomaly of -0.03°C having a probability of
0.0162%, compared to 0.0161% for those at the higher binned anomaly of 1.04°C. Thus,
it no longer indicated a meaningful relationship between overall UTCI anomalies and
GCoM participation, emphasizing that the results from the previous survival estimations
were influenced by confounding factors. Additionally, it proved that the results from
the six-season estimations in Plot 1 are at best short-lived. In contrast, negative UTCI
anomalies showed a slight upward trend, with the probability increasing from 0.0139%
for cities experiencing no anomaly to 0.0184% for those at 0.25°C, reflecting a 0.0045
percentage point increase. Positive GHCN anomalies, however, exhibited a much
stronger effect, as participation probability increased from 0.0117% at an anomaly of
0.24°C to 0.0286% at 0.99°C, corresponding to a 0.0169 percentage point rise.
Overall, at first glance, the results presented inconsistencies. The downward trend
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for UTCI anomalies over six seasons disappeared when extended to twelve seasons,
suggesting that any discouraging effect of higher UTCI anomalies on participation
was temporary or sensitive. However, the positive effect of negative UTCI anomalies
persisted, indicating that cities experiencing cooler-than-expected conditions may have
slightly increased participation. Nonetheless, compared to positive GHCN anomalies,
the percentage point increase in predicted probability from the lowest to the highest
bin was very small, suggesting that if negative UTCI anomalies positively influenced
participation, the effect was weak and not the primary driver. Moreover, the highest
binned average represented 0.25°C, which relatively to the positive anomalies does not
represent a stark deviation. The lack of a clear pattern for negative GHCN anomalies
over twelve seasons further undermined confidence in this finding. That said, the
inability to test cold spells and shocks leaves the possibility for a different results. In
contrast, positive GHCN anomalies consistently showed a much stronger effect on
participation across both six and twelve seasons, with a relatively high percentage point
increase from the lowest to the highest binned average. Even so, this finding should
be interpreted with caution. If positive temperature anomalies were the primary driver
of participation, a similar effect would likely be seen for positive UTCI anomalies.
Moreover, while predicted probabilities increased at higher positive GHCN anomalies,
they did so with growing uncertainty, making the interpretation of these effects more
difficult. Additionally, other explanations for the conflicting results could be that both
long-term positive and negative temperature anomalies act as drivers that cancel each
other out in crude anomalies or that the effects are highly context-dependent. However,
these possibilities were not explored further within this analysis.

Shifting focus to the European subset, the findings suggested across multiple specifica-
tions that European cities experiencing prolonged warming over twelve seasons were
more likely to join the GCoM. In contrast, those with prolonged cooling over the same
time horizon were less inclined to participate. This was shown through the significant
effects for crude, positive, and negative GHCN anomalies and crude and negative UTCI
anomalies. The IPW-adjusted estimations concerning these findings are illustrated via
ADRFs in Figure 4.14. The weighting process significantly improved covariate balance
and comparability for European cities, as evident from the shifts of correlation toward
zero in the love plots (see Figure D.3 in Apendix D). The effective sample size remained
high, exceeding 89 percent across estimations, indicating minimal data loss. Standard-
ized mean differences were low, with the highest at 0.061 for Southern Europe in the
positive GHCN anomaly estimation, well below the 0.1 threshold. Additionally, the pre-
dicted probabilities across all binned averages were statistically significant at the one
percent level.
The IPW-adjusted ADRF in Figure 4.14 confirmed previous findings, showing an up-
ward trend for both crude UTCI and GHCN anomalies, with a more substantial effect
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for GHCN anomalies (Plot 1 and 2). For GHCN anomalies, the predicted probability of
city participation increased from 0.0573% at -0.07°C to 1.59% at 1.31°C, reflecting a 1.53
percentage point rise. Similarly, regarding UTCI anomalies, the probability rose from
0.16% at experiencing -0.03°C to 0.71% at 1.72°C, i.e., a 0.56 percentage point increase.
The ADRF for positive GHCN anomalies (Plot 3) reinforced this trend, with the probabil-
ity for cities to participate in the GCoM growing from 0.12% at 0.32°C to 1.12% at 1.31°C,
equivalent to a 1.01 percentage point increase. However, as anomaly values increased,
confidence intervals widened, indicating greater variability in predicted probabilities at
higher exposure levels. In contrast, long-term cooling trends were observed to reduce the
likelihood of participation, further aligning with previous findings. For negative GHCN
anomalies (Plot 4), the predicted probability dropped from 0.61% at 0°C to 0.21% at -
0.31°C, reflecting a 0.40 percentage point decrease. A similar pattern appeared for nega-
tive UTCI anomalies (Plot 5), where participation probability declined from 0.64% at 0°C
to 0.20% at -0.37°C, corresponding to a drop of 0.44 percentage points.

FIGURE 4.14: Average Dose Response Functions for IPW-Adjusted Esti-
mates of Temperature Anomalies and Shocks in European Urban Centres

(6 & 12 Period Moving Averages)
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Thus, the previous findings indicating that European cities experiencing long-term
warming trends were more likely to join the GCoM, while sustained cooling trends were
associated with lower participation probabilities, were reinforced after adjusting for con-
founding. The consistency of these trends across multiple exposure measures, including
both UTCI and GHCN anomalies, further supported this conclusion. That said, the
finding only held when considering longer time horizons, spanning at least twelve sea-
sons or six years, and only when considering anomalies, as opposed to weather shocks
and spells, highlighting the importance of perceptible long-term changes. Moreover, it
should be kept in mind that the confidence intervals remained wide.

FIGURE 4.15: Average Dose Response Functions for IPW-Adjusted Esti-
mates of Immediate and Delayed (one-lag) Weather-Related Disasters in

European Urban Centres

Regarding the findings on weather-related disasters, previous results indicated that
for European cities, the number of hydrological disasters and crude and hydrological
fatalities discouraged GCoM participation. This was also observed for crude fatalities
experienced in the past season. However, adjusting these results for confounding proved
challenging. Similar to cold shocks and spells, estimations for the immediate effects of
the number of hydrological disasters could not be tested due to the count-based nature
of the variable. Additionally, weighting for both the immediate and lagged effects
of hydrological and crude fatalities did not adjust for confounding. As shown in the
love plots in Figure D.4 in Apendix D, the effective sample size for both estimations
was nearly 100 percent. This was due to the covariates’ failure to explain variation
in the exposure measures, with the GPS model again returning a McFadden R! of
approximately 0 in both cases. Furthermore, due to limited variation in the variables,
the ADRF computations resulted in predicted probabilities being generated for only two
bins, as seen in Plots 1 and 2 in Figure 4.15 making the estimates unreliable for detecting
a consistent trend. Given these limitations, the persistence of the findings from the
previous estimations on immediate and lagged effects of weather-related disasters on
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European GCoM participation could not be reliably confirmed.

FIGURE 4.16: Average Dose Response Functions for IPW-Adjusted Esti-
mates of Weather-Related Disasters in European Urban Centres (6 & 12

Period Moving Averages) (1)
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FIGURE 4.17: Average Dose Response Functions for IPW-Adjusted Esti-
mates of Weather-Related Disasters in European Urban Centres (6 & 12

Period Moving Averages) (2)

Turning to the findings considering more persistent effects over longer time horizons,
the previous results suggested that the number of disasters and associated fatalities sig-
nificantly influenced GCoM participation in Europe, likely driven by the strong effect of
meteorological disasters and related fatalities. Additionally, hydrological disasters and
associated deaths were found to discourage participation. The IPW-adjusted results for
these findings are presented in Figures 4.16 and 4.17. Overall, most weighting estimations
were successful, with covariates achieving balance and a good effective sample size (see
Figure D.4 and D.5 in Apendix D). That said, the adjustment issue for hydrological deaths
persisted, resulting in high effective sample sizes. Consequently, the previously observed
adverse effects of hydrological deaths averaged over the six-, and twelve-season periods
require caution (Plot 5 in Figure 4.16 and Plot 11 in Figure 4.17). Nonetheless, the estima-
tion for the number of hydrological disasters (Plot 9 in Figure 4.17) over a twelve-season
horizon achieved balance, providing some insights into the effect of this type of disaster.
It should further be noted that in the weighted estimation concerning the twelve-season
average for meteorological disasters (Plot 11 in Figure 4.16), IPW weights did not fully
account for confounding related to the travel time to the capital. However, the results
remained interpretable with a standard mean differential imbalance of 0.11, which was
only slightly above the 0.1 threshold and still below an acceptable absolute 0.2 threshold.
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Despite these limitations, the remaining results provided valuable insights, with all pre-
dicted probabilities returned at the one percent significance level.
The IPW-adjusted results on the estimations considering the six-season moving averages
of weather-related exposure (Plots 1 to 5 in Figure 4.16), confirmed the findings from the
survival estimations. The average number of disasters over six seasons was associated
with an increase in predicted probability from 0.42% at zero disasters to 0.77% at 0.67
disasters, corresponding to a 0.35 percentage point increase. A similar but stronger ef-
fect was observed for meteorological disasters, where participation probability rose from
0.45% at zero events to 1.04% at 0.50 events, reflecting a 0.59 percentage point increase.
Regarding disaster-related fatalities, cities with the highest number of deaths saw par-
ticipation probability increase from 0.42% at zero fatalities to 0.74% at 4.17 log average
fatalities, which translated to a 0.32 percentage point rise. The effect was even stronger
for fatalities from meteorological disaster, where probability increased from 0.41% at zero
fatalities to 0.82% at 4.16 log fatalities, reflecting a 0.41 percentage point increase. How-
ever, in all cases, confidence intervals widened as the exposure measure increased, point-
ing toward a higher level of uncertainty at the upper end.
Further considering twelve-season moving averages, the IPW-adjusted ADRFs rein-
forced the observed trends. The average number of disasters over twelve seasons re-
mained associated with an increase in predicted probability from 0.41% at zero disasters
to 0.73% at 0.58 disasters, i.e., a 0.32 percentage point increase. Similarly, the log of aver-
age fatalities from natural disasters showed an increase in participation probability from
0.37% at zero fatalities to 0.51% at 4.77 log fatalities, i.e., a 0.14 percentage point rise. Me-
teorological disasters again displayed the strongest association with GCoM participation,
with predicted probability rising from 0.36% at zero experienced meteorological disasters
to 1.52% at 0.50 disasters, corresponding to a 1.16 percentage point increase. The effect of
meteorological disaster fatalities followed the same pattern, with probability increasing
from 0.38% at zero fatalities to 0.57% at 4.77 log fatalities, a 0.19 percentage point increase.
Hence, these results suggested that cities experiencing sustained meteorological disasters
showed were more inclined to join the GCoM. While some uncertainty remained, as evi-
denced by the wide confidence bands, this pattern was evident in the number of disasters
and related fatalities and remained consistent across the six- and twelve-season time hori-
zons.
That said, hydrological disasters exhibited an opposite trend. Cities experiencing more
hydrological disasters saw a decrease in participation probability, from 0.47% at zero dis-
asters to 0.31% at 0.17 disasters, reflecting a 0.15 percentage point decline over a twelve-
season horizon (Plot 8 in Figures 4.16). While the confidence interval remained wide,
it narrowed as the occurrence of disasters increased. These findings suggested that hy-
drological disasters may have discouraged participation in European cities. However,
it should be kept in mind that this result was based on an ADRF of only three binned
averages, due to the lack of variability in the variable. Nonetheless, the consistency of
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this finding across both immediate and longer time horizons, as well as across the occur-
rence and death measures in the survival estimations, indicated that this result cannot be
discarded and should be further tested.
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Chapter 5

Discussion

Following this chapter, the results from the empirical analysis are discussed in relation
to the hypotheses outlined in Chapter 3.1, distinguishing between the European and
non-European contexts. The limitations of the analysis are also addressed, along with
potential avenues for future research.

First, hypothesis H1-A proposed that cities are more likely to join the GCoM when
confronted with a temperature shock. This was quantitatively assessed by evaluating
both the immediate and lagged effects of temperature anomalies and shocks, measured
through crude, positive, and negative anomalies, as well as heat and cold shocks and
spells, on the logit hazard of European and non-European cities joining the GCoM.
On one hand, the survival analysis results revealed no consistent pattern among Eu-
ropean cities. On the other hand, for non-European cities, the results suggested that
warmer-than-average conditions triggered same-season participation, with significant
effects observed across three exposure measures. This finding remained consistent
even after adjusting for confounding factors. However, the wide confidence intervals
indicated some uncertainty, and the absence of significant effects for at least positive
UTCI anomalies implied that while positive temperature deviations might influence
same-season participation outside of Europe, they are not the primary driver of partic-
ipation. Adding to this finding was that past-season negative temperature anomalies
and shocks across four exposure measures were also significantly linked to increased
participation in global cities. However, IPW constraints limited further testing, leaving
the robustness of this result unverified, which is a known limitation of this analysis.
Nevertheless, the persistence of these effects in the lagged models warrants further
investigation to understand the relationship better.
Thus, while the hypothesis can be rejected concerning European cities, findings at the
global level provide support, albeit with considerable uncertainty. These suggest that
positive temperature deviations positively affect same-season GCoM participations
outside of Europe.

Second, hypothesis H1-B formulated whether cities experiencing a weather-related
disaster were more likely to join the GCoM. To assess this, the analysis tested the
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immediate and lagged effects of crude and different types of disasters, including their
occurrences and related fatalities on GCoM participation.
On one hand, considering European cities, the survival analysis revealed mixed results.
Climatological disasters appeared to hinder same-season participation, but the extreme
effect size indicated this was due to estimation errors. Furthermore, hydrological
disasters and fatalities were shown to negatively impact participation, implying that
floods may not be viewed as a significant climate action driver. The estimations with
one lag further revealed a significant positive effect for climatological disasters and a
significant negative effect for crude fatalities. However, the impact of climatological
disasters was not reassessed due to previous estimation issues concerning the variable,
and the IPW adjustments did not clarify the robustness of the other significant findings.
Regarding global cities, disaster exposure showed no consistent impact on same-season
participation and highlighted stark sensitivities across various disaster types, along with
related occurrences and death tolls. Additionally, lagged effects showed no significant
estimates, and higher AIC values weakened the argument for delayed disaster-driven
GCoM participation. Despite the sensitivities and uncertainties, the hypothesis can
be definitely rejected in European and non-European contexts for all disaster types,
when excluding climatological ones. Although the negative effects of same-season
hydrological disasters and past-season crude fatalities in Europe could not be confirmed
through IPW, they remained negative, offering no support for a positive impact on
GCoM participation. This finding contrasts with that of Baccini and Leemann (2021),
who observed a short-term increase in support for pro-climate policies following floods
in Switzerland, suggesting that disasters might trigger temporary shifts in public
sentiment in Europe. In the global context, all significant estimates were also negative,
except for climatological deaths, providing little support for a positive disaster impact
on same-season GCoM participation. These results align with Rowan (2022), who found
no influence of temperature shocks or natural disasters on climate mitigation policies,
even considering political regime type or wealth. Nonetheless, it should be noted that
on the contrary, Nohrstedt, Hileman, Mazzoleni et al. (2022) observed that wealthier
and politically stable cities were more likely to implement adaptation measures after
disasters. Thus, while the hypothesis is rejected, future research should explore whether
these findings are context-dependent and subject to moderation effects. Moreover, the
estimation issues encountered with climatological disasters leave open the possibility of
their influence, as they demonstrated a positive impact on participation in the lagged
model for Europe and an immediate positive effect considering all other cities. Future
research should, therefore, investigate their impact using alternative methods, which
adjust for rare events.

Third, Hypothesis (H2-A) proposed that cities experiencing prolonged changing tem-
perature patterns are more likely to join the GCoM. This hypothesis was examined by
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considering six- and twelve-season moving averages of the crude, positive, negative
UTCI and GHCN anomaly measures, as well as the averaged heat and cold shocks and
spells experienced.
Early in the analysis, a pattern already emerged when examining the survival trajectories
of cities based on their temperature anomaly quartile (using the 2015-2023 reference
period and 1981-2010 base period) in the Kaplan-Meier curves. Cities with the lowest
temperature anomalies were slower to join the GCoM, while those with anomalies above
the 50th percentile had a faster participation rate, both within and outside of Europe.
That said, the survival estimations revealed no significant effect from medium-term
temperature trends (considering six-season moving averages) on GCoM participation
in Europe. However, longer-term trends (considering twelve-season moving averages)
consistently showed that European cities with prolonged warming were more likely to
join the GCoM. In contrast, those with prolonged cooling had lower participation rates,
which was further confirmed after adjusting for confounding, although the confidence
intervals remained wide. Nonetheless, despite the uncertainty, since the findings were
consistent across multiple exposure measures and in the weighted estimations, the
hypothesis can be accepted in the European context, with long-term positive tem-
perature deviations increasing GCoM involvement and sustained negative deviations
discouraging participation. This aligns with Hoffmann, Muttarak, Peisker et al. (2022),
who found that temperature anomalies led to higher Green Party votes in European
Parliament elections, but contrasts with Reckien, Flacke, Olazabal and Heidrich (2015),
who observed that warmer summers hindered climate action plans in Europe, and
Rowan (2022), who challenged the assumption that temperature anomalies consistently
drive climate policy shifts.
In the global context, rejecting or accepting the hypothesis proved more challenging.
Survival estimations initially showed that prolonged cold conditions were consistently
linked to GCoM participation across both six- and twelve-season measures. In con-
trast, positive GHCN anomalies were also significantly associated with participation.
However, the IPW-adjusted results revealed that the negative significant effect of the
twelve-season moving average of crude UTCI anomalies was initially confounded.
That said, the positive effect of negative UTCI anomalies remained after applying IPW
adjustments, but the results were uncertain due to wide confidence intervals and only
appeared in one exposure measure. Similarly, the positive association with GHCN
anomalies persisted after weighting but was also accompanied by high uncertainty and
was not confirmed by other exposure measures. These results likely reflect opposing
effects of long-term positive and negative temperature deviations or the influence of con-
textual factors, which warrants further investigation into how economic and governance
structures mediate their relationship with GCoM participation. Nonetheless, because
of the high degree of uncertainty, the hypothesis cannot be conclusively accepted or
rejected in the global context.
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Finally, hypothesis H2-B examined whether cities experiencing repeated weather-related
natural disasters were more likely to join the GCoM. This was tested using the six- and
twelve-season averages of the overall number of weather-related disasters and related
deaths, disaggregated for meteorological, hydrological, and climatological disasters.
At first glance, the Kaplan-Meier curves revealed no direct relationship between higher
disaster frequencies and faster GCoM participation for European and non-European
cities. However, in the survival estimations and IPW-adjusted results for European cities,
meteorological disasters were linked to increased GCoM participation, with a strong
association for both the number of disasters and fatalities across six- and twelve-season
moving averages. Despite some uncertainty due to wide confidence intervals, the
robustness of the pattern suggests that repeated exposure to storms and extreme weather
drives cities in Europe to take climate action. In contrast, survival results showed that
cities with repeated flooding were less likely to participate. Adjusting for confounding
in hydrological disasters was more challenging, but the consistency of this pattern across
occurences and fatalities and immediate and long-term estimations gives credit to the
findings. One possible explanation may be that floods are not as directly linked to climate
change as meteorological events, although this requires further investigation. Thus,
while the hypothesis can be confidently accepted for meteorological disasters in Europe,
it can be rejected for hydrological disasters, though with some degree of uncertainty.
These findings align with Ji and Darnall (2022), who found that only winter storms and
geological hazards influenced sustainability planning, while water-related hazards had
no impact, further providing evidence on the varying effects of different disaster types
on climate action. As for non-European cities, only climatological disasters showed
a consistent negative effect over twelve seasons. However, the extreme magnitude of
this estimate suggested potential estimation issues since it implied an almost complete
reduction in the odds of joining the GCoM. Other disaster types and overall disaster
exposure had no significant effects, indicating that persistent disasters did not strongly
influence GCoM participation in non-European cities. Therefore, this hypothesis can be
rejected for cities outside Europe, which is consistent with Rowan (2022).

Overall, these findings highlighted significant differences in how European and
non-European cities respond to climate-related exposure, particularly regarding their
participation in trans-municipal climate networks like the GCoM. This became evident in
the Kaplan-Meier survival curves, which showed that European cities joined the GCoM
more quickly than non-European cities, likely due to the GCoM initially being open only
to European cities. Furthermore, in response to the research question (how exposure to
climate shocks and disasters influences a city’s decision to join climate networks), sev-
eral interesting patterns emerged. The results showed that temperature shocks had no
significant immediate effect on participation in Europe. However, positive temperature
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deviations influenced same-season participation outside of Europe, while the delayed
effects of negative anomalies were less clear. Regarding weather-related disasters, when
excluding climatological disasters, no immediate effects were observed in either context
that would increase the likelihood of GCoM participation. More consistent findings
were observed when considering long-term trends, with the influence of meteorological
disasters and prolonged warming on participation in Europe. This suggested that
European cities are more likely to respond to sustained climatic changes than isolated
extreme events. On the other hand, hydrological disasters, particularly floods, appeared
to hinder participation, although this finding could not be conclusively confirmed. In
the global context, however, repeated natural disasters did not have a clear impact on
GCoM participation, suggesting that they are not an influential driver. At the same time,
considerable uncertainty surrounded the findings on long-term temperature changes
in international cities. Thus, depending on the regional context and the time-horizons
considered, exposure to climate threats can act as a driver for participation in TMNs.

Despite these insights, it was noticeable that many findings were accompanied by a
considerable level of uncertainty and sensitivity, indicating the need for further inves-
tigation. This uncertainty suggests that context-dependent factors may influence the
effects, as highlighted in the literature (Hoffmann et al., 2022; Nohrstedt et al., 2022) and
underscore that climate exposure may not be the primary driver of climate action. In-
stead, decisions about participation may be moderated by a combination of governance
capacity, and economic resources with climate exposure serving as a secondary trigger
rather than a primary determinant, as was suggested by Zahran, Brody, Vedlitz, Grover
and Miller (2008a). The results further highlighted the importance of city size in shaping
GCoM participation, with larger cities consistently demonstrating a higher likelihood of
engagement in both the European and global subsets, potentially also being a factor that
moderates the observed effects.
On a methodological level, the analysis underscored the importance of using multiple
temperature datasets, as findings diverged depending on whether UTCI or GHCN
anomalies were used. Adjusting for confounding factors also proved essential, as failure
to do so would have led to false conclusions in at least one case. Additionally, regional
disparities in exposure and affluence, especially between the Global North and South,
further emphasized the importance of accounting for selection bias.

That said, several limitations of the analysis should be considered. First, disaster events
were often linked to multiple administrative levels, introducing a measurement error
and making it difficult to assign their impact accurately to the precise urban boundary.
Second, biases resulting from missing data in the disaster fatality measure could only be
partially addressed. Third, the analysis focused only on GCoM participation as a proxy
for network participation, excluding alternative networks like smaller, lesser-known
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TMNs. This left the possibility that a city may have joined another TMN after a climate
event, which was not accounted for. Fourth, while using country-fixed effects was
necessary to control for broader national influences and underlying economic and
governance conditions, it may have absorbed much of the variation in the exposure
effects. This could have led to an underestimation of their actual impact on participation.
Fifth, while inverse probability weighting was applied to adjust for confounding, it
did not account for all potential biases. This method is not a one-size-fits-all approach,
as different exposure measures may require distinct modeling specifications, and as it
was not applied to count-based variables. Moreover, while IPW adjusts for observable
confounders and strengthens causal implications, other characteristics contributing to
confounding may still have influenced the results, as not all factors could be included in
the GPS model. Finally, the analysis did not adjust for rare events, which was reflected
in the difficulty of isolating the true impact of climatological disasters.

The findings of this analysis open multiple avenues for future research. Given the un-
certainty in the results, future studies should investigate sensitivities in the exposure
measures and test for moderation effects across varying levels of city affluence and city
size. Moreover, future studies should explore alternative modeling approaches to ad-
dress the issues that arose due to introducing country-fixed effects. Additionally, refin-
ing the application of IPW, such as adjusting for count-based variables and adapting the
specifications to each exposure measure separately, would improve reliability. At the
same time, the persistent effect of prolonged colder-than-average conditions outside of
Europe remains intriguing. Given its consistency across multiple specifications, future
research should explore this relationship further. Similarly, the negative effect of hydro-
logical events in Europe was not fully confirmed, and future studies should also aim to
isolate the true impact of climatological disasters on network participation. Moreover, the
sensitivities in the immediate effects of weather-related disasters on in the global context
of GCoM participation warrant deeper investigation. Finally, the divergence in results
between UTCI and GHCN anomalies highlights the importance of incorporating both re-
analysis and weather station data in future research, as relying on a single measure may
lead to biased conclusions.
Despite its limitations, this analysis contributed to the literature on urban climate ac-
tion. It provided one of the most comprehensive empirical assessments of how climate
exposure influences city participation in TMNs, both in scope and geographical reach,
while highlighting key regional differences between Europe and the global context. By
distinguishing between immediate and long-term climate exposures, the analysis also
enhanced the understanding of how cities make decisions while considering different
time horizons.
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Conclusion

The increasing intensity of climate change presents major challenges for cities, as rising
temperatures, extreme weather, and natural disasters amplify their existing vulnerabili-
ties. In response, many cities have decided to take action to mitigate and adapt to these
changes, with one strategy being the participation in trans-municipal climate networks
(TMNs). This thesis empirically examined how seasonal temperature anomalies, shocks,
and weather-related disasters influence urban participation in these networks by mod-
eling the decision-making process of 11,344 cities to join the Global Covenant of Mayors
for Climate and Energy (GCoM). The analysis employed geographic information system
techniques and integrated multiple data sources, including the Joint Research Centre’s
Global Human Settlement - Urban Centre Database (Florczyk et al., 2019), GHCNv4
temperature anomalies (GISTEMP Team, 2024), the Universal Thermal Climate Index
(Di Napoli et al., 2021), and the Emergency Events Database (Centre for Research on
the Epidemiology of Disasters, 2024). Moreover, the analysis employed discrete-time
survival analysis and strengthened the robustness of the findings by adjusting for
selection bias through inverse probability weighting (IPW).

The findings revealed regional differences in TMN participation. European cities joined
the GCoM faster than their non-European counterparts, likely due to its initial exclu-
sivity. Long-term climate patterns played a significant role in Europe, with persistent
positive temperature deviations and repeated meteorological disasters, such as extreme
temperatures and storms, positively influencing participation rates. In contrast, outside
Europe, long-term temperature patterns showed no consistent impact that could be
conclusively confirmed, and repeated natural disasters did not drive participation.
Instead, positive temperature deviations were found to have an immediate effect,
influencing same-season membership decisions. These results suggested that exposure
to climate threats can influence TMN participation depending on the regional context
and time horizons considered.

That said, many findings were accompanied by a high degree of uncertainty, indicating
that other factors, such as governance capacity, economic resources, and city size,
might moderate the effects of climate exposures. Thus, while climate exposure was
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shown to act as a trigger, it is unlikely to be the primary determinant of participation.
However, these considerations were not explored, an aspect that this analysis lacked.
Additionally, methodological limitations must be considered, including measurement
errors in disaster data, potential underestimation of exposure effects due to the inclusion
of country-fixed effects, and challenges in accounting for rare climatological disasters.
Furthermore, not all weighted estimations successfully adjusted for confounders, and the
application was not adjusted for count-based variables, which limited the effectiveness
of IPW.

Given these uncertainties and limitations, several avenues for future research emerge.
Further investigation is needed into context-dependent effects, particularly the role of
city-level affluence, governance capacity, and city size in moderating climate exposure’s
influence on network participation. Refining the IPW method used and exploring
alternative modeling approaches to address the challenges of including country-fixed
effects would enhance the robustness of results. Additionally, unresolved consider-
ations, such as the persistence of prolonged colder-than-average conditions outside
Europe, the unconfirmed impact of hydrological disasters in Europe, and the role of
climatological disasters in network participation, warrant further exploration. Finally,
expanding the analysis beyond the GCoM to include smaller TMNs would provide a
more comprehensive understanding of urban network participation, as many cities may
engage in alternative networks not captured in this analysis.

Despite its limitations, this analysis contributed to the understanding of the role of ex-
posure to climate threats in trans-municipal network participation. It offered one of the
most comprehensive empirical assessments in terms of scope and highlighted regional
disparities and the varying impacts of short- and long-term climate shifts. Future re-
search can build on these findings to further refine the understanding of the factors driv-
ing cities to engage in climate action.
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Appendix A

The link to the repository containing the do-files for the computation of the empirical
models can be found here:
https://tinyurl.com/repositorygcom.

https://tinyurl.com/repositorygcom
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Appendix B

FIGURE B.1: Summary Statistics of Time-Invariant Variables in Sample of
GHS Urban Centres
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FIGURE B.2: Summary Statistics of Time-Varying Variables in Sample of
GHS Urban Centres
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Appendix C

FIGURE C.1: Missingness in Human-Impact Variables in Weather-related
Disaster Observations within Sample of GHS Urban Centres (April 2000 -

March 2024)



88 APPENDIX C

FIGURE C.2: Average Moran’s I Across Distance Bands for Exposure Vari-
ables in Sample of GHS Urban Centres

FIGURE C.3: Significant Moran’s I (| Î| → 0.05, p < 0.1) in Model Residuals,
using various Exposure Variables Across Distance Bands
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FIGURE C.4: Variation Inflation Factors for the Estimation of the Effect of
Control Variables on the Logit Hazard of City Participation in the GCoM
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Appendix D

FIGURE D.1: Love Plots: Covariate Balance Before & After IPW for Global
(excl. Europe) Urban Centres Temperature Anomalies & Shock Estima-

tions (1)



APPENDIX D 91

FIGURE D.2: Love Plots: Covariate Balance Before & After IPW for Global
(excl. Europe) Urban Centres Temperature Anomalies & Shock Estima-

tions (2)
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FIGURE D.3: Love Plots: Covariate Balance Before & After IPW for Euro-
pean Urban Centres Temperature Anomalies & Shocks Estimations
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FIGURE D.4: Love Plots: Covariate Balance Before & After IPW for Euro-
pean Urban Centres Weather-Related Disasters Estimations (1)
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FIGURE D.5: Love Plots: Covariate Balance Before & After IPW for Euro-
pean Urban Centres Weather-Related Disasters Estimations (2)
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