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Abstract

This technical appendix of Eisenack and Mier (2019) presents the proofs and calculations (Section 1), and

the extension to perfectly correlated generation units (Section 2). See also Eisenack and Mier (2018).
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1 Calculations and Proofs

1.1 Deriving the First-Order Conditions

One can generally solve the program by using Kuhn-Tucker conditions. Yet, as several of steps are
common, we keep them brief. Start with Stage 4. If follows from the definition of excess demand
that x0 = D− x̃N−xP−xH > 0 only if x̃N < D−xP−xH . As D,xP, x̃N are given in Stage 3, we can
leave out expectations and the problem is to maximize w.r.t. xH . We obtain the derivative

∂J
∂xH

=

−cH + c0 > 0 for x̃N < D− xP− xH ,

−cH < 0 else.
(1)

The signs of the derivatives follow from the cost assumptions. Thus, highly dispatchable technolo-
gies are only employed if there would be excess demand otherwise. The optimal output is

xH =


kH for x̃N ∈Ω4,

D− x̃N− xP for x̃N ∈Ω3,

0 else.

(2)

In Stage 3, non-dispatchable production realizes, independently of all decision variables except kN ,
so that

E [x̃N ] = akN (3)

By using the definition of excess demand, (2), and conditional expectations, we obtain the expected
outcome of Stage 3 as given by

E [xH ] = kH Pr 4 +E [D− xP− x̃N |Ω3]Pr 3, (4)

E [x0] = E [D− xP− x̃N− xH |Ω3]Pr 4. (5)

Now turn to Stage 2. Inserting expected output of all capacities and E [x0] into the maximand
(Equation 1 in Eisenack and Mier (2019)) yields

E [J] = U (D)−∑
j

b jk j− cPxP− cNakN

−cH (kH Pr 4 +E [D− xP− x̃N |Ω3]Pr 3)

−c0E [D− xP− x̃N− kH |Ω4]Pr 4. (6)
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Due to the Inada conditions for U (D), the first-order condition ∂E[J]
∂D = 0 yields optimal marginal

utility of

−∂E [J]
∂D

= cH Pr 3 + c0 Pr 4−U ′ (D) . (7)

By using that x̃N is boundedly integrable, the derivatives can be simplified by interchanging dif-
ferentiation and expectation (see also Chao 1983, p. 182; Chao, 2011, p. 3952). We will use this
feature repeatedly in the following. Here, it yields

∂E [J]
∂xP

= cH Pr 3 + c0 Pr 4− cP. (8)

If the derivative is positive (negative), it is (not) beneficial to increase production of partially dis-
patchable technologies up to its capacity. Thus, depending on the sign of the derivative, either
xP < kP or xP = kP in the optimum. Suppose that xP < kP is optimal. Then ∂E[J]

∂kP
= −bP < 0.

employing partially dispatchable technologies would never be beneficial so that xP = kP = 0, a
contradiction to xP < kP. Consequently, xP = kP. The remaining first-order conditions are

∂E [J]
∂kN

= acH Pr 3 +ac0 Pr 4−bN−acN , (9)

∂E [J]
∂kP

= cH Pr 3 + c0 Pr 4−bP− cP, (10)

∂E [J]
∂kH

= −cH Pr 4 + c0 Pr 4−bH . (11)

1.2 Proof of Proposition 1

Case without non-dispatchable technologies. We denote results for the case kP > kN =

0 with the superscript P. Demand is always met, xP
P + xP

H = DP, because scheduled demand is
fixed and excess demand is more costly than output from either partially or highly dispatchable
technologies, bP + cP,bH + cH < c0. This yields x0 = 0 and Pr4 = 0. As the LRMC of partially
dispatchable technologies are lower than the LRMC of highly dispatchable technologies, bP+cP <

bH + cH , there is no highly dispatchable capacity in the optimum, i.e., kH = 0 and Pr3 = 0. As
excess capacity has no benefits, partially dispatchable technologies must produce at full capacity,
xP

P = kP
P = DP. The maximand is simplified to JP := U

(
DP)− (bP + cP)DP. Thus, optimally

scheduled demand DP is characterized by the marginal condition U ′
(
DP)= bP + cP.
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Case without partially dispatchable technologies. We denote results for the case kN >

kP = 0 with superscript N. Solving (11) for PrN
4 , using (11) in (9), and solving for PrN

34, we obtain

Pr N
4 =

bH

c0− cH
, (12)

Pr N
34 =

bN
a + cN−bH

cH
. (13)

It follows from bH + cH < c0 and bH > 0 that Pr4 ∈ (0,1). Using (12) and (13) in the first-order
condition (7) yields DN , characterized by marginal utility U ′

(
DN) = bH + cH Pr34 = bN

a + cN .
We can further exploit kP = 0 and (3) and (11) in the maximand (6) to obtain JN := U

(
DN)−(

bN
a + cN

)
DN− γkN with

γ := (a−a34)

(
bN

a
+ cN

)
+(a34−a4)bH , (14)

where γ > 0 without loss of generality due to a4 < a34 < a.

Comparison of cases. By denoting ∆U := U
(
DN)−U

(
DP) and ∆D := DN −DP, it can be

verified that JN = JP if

∆C = Ψ :=

(
bN
a + cN

)
∆D+ γkN−∆U

DP . (15)

Positivity of Ψ. Suppose that ∆C = Ψ ≤ 0. Note that utility is strictly increasing, strictly
concave, and fulfills Inada conditions, i.e., U

(
DN)−U ′

(
DN)DN ≤U

(
DP)−U ′

(
DP)DP. Addi-

tionally accounting for γ > 0 leads to JN < JP, a contradiction. We conclude that Ψ > 0.

1.3 Proof of Lemma 1

We only need to consider the situation with kP = 0. Then, Pr4 =
´ D−kH

0 f (x̃N ;kN)dx̃N , Pr3 =´ D
D−kH

f (x̃N ;kN)dx̃N , and Pr34 =
´ D

0 f (x̃N ;kN)dx̃N . By the Leibniz rule, we obtain the signs of the
derivatives of Pr3,Pr34,Pr4 w.r.t. kH ,D as given in Table 1 below, as f is independent from kH ,D.
The derivatives ∂ Pr34

∂kN
=
´ D

0
∂ f (x̃N ;kN)

∂kN
dx̃N and ∂ Pr4

∂kN
=
´ D−kH

0
∂ f (x̃N ;kN)

∂kN
dx̃N are negative as they are

determined over intervals bounded below by zero, because x̃N ≥ 0 by definition, and almost sure
∀z : ω(z) > 0. The sign of ∂ Pr3

∂kN
=
´ D

D−kH

∂ f (x̃N ;kN)
∂kN

dx̃N is generally ambiguous because ∂ f (x̃N ;kN)
∂kN

can be higher or lower at D or D− kH . Thus, every component of the Table in Lemma 1 has been
shown.
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∂/∂kN ∂/∂kH ∂/∂D

Pr34
´ D

0
∂ f (x̃N ;kN)

∂kN
dx̃N < 0 0 f (D;kN)> 0

Pr4
´ D−kH

0
∂ f (x̃N ;kN)

∂kN
dx̃N < 0 − f (D− kH ;kN)< 0 f (D− kH ;kN)> 0

Pr3 not possible to show f (D− kH ;kN)> 0 f (D;kN)−
f (D− kH ;kN)

Tab. 1: Partial derivatives of probabilities w.r.t. kN ,kH ,D

1.4 Proof of Proposition 2

The comparative statics can be derived from first-order conditions (7), (9), and (11). The total
differential of these three conditions with respect to the dependent variables (kN ,kH ,D) and one
parameter of interest (here: one of bN ,cN ,bH ,cH ,c0) always yields an equation system. This needs
to be solved to obtain the comparative statics of kN ,kH ,D with respect to the parameter. These
solutions are eased by noting that the first-order conditions can be equivalently written as

FH := (c0− cH)Pr 4−bH = 0, (16)

FD :=
bN

a
+ cN−U ′ = 0, (17)

FN := bH + cH Pr 34−
bN

a
− cN = 0, (18)

by considering the following: (16) just rewrites (11). (17) is obtained by solving (16) for c0 Pr4,
substituting into (9), and using that Pr3+Pr4 = Pr34. (18) is obtained from (9), substituting c0 Pr4,
and simplifying as before. The partial derivatives are summarized in Table 2, where ∂FN

∂kH
= 0 is

implied by Table 1 from Section 1.3.

∂/∂kN ∂/∂kH ∂/∂D
FN cH

∂ Pr34
∂kN

0 cH
∂ Pr34

∂D

FH (c0− cH)
∂ Pr4
∂kN

(c0− cH)
∂ Pr4
∂kH

(c0− cH)
∂ Pr4
∂D

FD 0 0 −U ′′

∂/∂bN ∂/∂cN ∂/∂bH ∂/∂cH ∂/∂c0

FN −1/a −1 1 Pr34 0
FH 0 0 −1 −Pr4 Pr4

FD 1/a 1 0 0 0

Tab. 2: Partial derivatives of FN ,FH ,FD.

This structure make the comparative statics for D easy to determine. Using implicit differen-
tiation, we obtain dD

dbH
= − ∂FD

∂bH
/∂FD

∂D = 0, dD
dcH

= dD
dc0

= 0, dD
dbN

= 1
aU ′′

< 0, and dD
dcN

= 1
U ′′

< 0. The

total differential of (18) becomes, for any parameter, a straightforward equation because ∂FN
∂kH

= 0.
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For bN , e.g.,

0 = cH
∂ Pr34

∂kN
dkN + cH

∂ Pr34

∂kH
dkH + cH

∂ Pr34

∂D
dD− 1

a
dbN , (19)

where ∂ Pr34
∂kH

= 0 as shown in Table 1. Solving for dkN
dbN

by using ∂ Pr34
∂kN

, ∂ Pr34
∂D from Table 1 and

dD
dbN

= 1
aU ′′ leads to

dkN

dbN
=

1
a

U
′′− cH

∂ Pr34
∂D

U ′′cH
∂ Pr34
∂kN

> 0. (20)

For the other parameters, the same steps yield dkN
dcN

= a dkN
dbN

> 0, dkN
dbH

=
(
−cH

∂ Pr34
∂kN

)−1
> 0, dkN

dcH
=

Pr34

(
−cH

∂ Pr34
∂kN

)−1
> 0, and dkN

dc0
= 0. For the comparative statics for kH , we start with bH , so that

the total differential of (16) is

dFH = (c0− cH)
∂ Pr4

∂kN
dkN +(c0− cH)

∂ Pr4

∂kH
dkH +(c0− cH)

∂ Pr4

∂D
dD−dbH = 0, (21)

so that

∂ Pr4

∂kN

dkN

dbH
+

∂ Pr4

∂kH

dkH

dbH
=

1
c0− cH

, (22)

where we have used that dD
dbH

= 0. Now, the result for dkN
dbH

and Table 1 can be used to determine

dkH

dbH
=

cH
∂ Pr34
∂kN

+(c0− cH)
∂ Pr4
∂kN

cH
∂ Pr34
∂kN

(c0− cH)
∂ Pr4
∂kH

< 0. (23)

In the same way, we obtain ∂kH
∂cH

= Pr34
∂kH
∂bH

< 0, ∂kH
∂c0

=−Pr4

(
(c0− cH)

∂ Pr4
∂kH

)−1
> 0, and

dkH

dcN
=
−U ′′ ∂ Pr4

∂kN
+ cH

(
∂ Pr4
∂kN

∂ Pr34
∂D −

∂ Pr34
∂kN

∂ Pr4
∂D

)
U ′′cH

∂ Pr34
∂kN

∂ Pr4
∂kH

= a
∂kH

∂bN
, (24)

where (24) has an ambiguous sign. The denominator is always negative, so that the numerator
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determines the sign. It follows that dkH
dbN

, dkH
dcN

< 0 if and only if

0 < −U ′′
∂ Pr4

∂kN
+ cH

(
∂ Pr4

∂kN

∂ Pr34

∂D
− ∂ Pr34

∂kN

∂ Pr4

∂D

)
−U ′′ < −cH

∂ Pr4
∂kN

∂ Pr34
∂D −

∂ Pr34
∂kN

∂ Pr4
∂D

∂ Pr4
∂kN

= cH

(
∂ Pr34

∂kN
/

∂ Pr4

∂kN
· ∂ Pr4

∂D
− ∂ Pr34

∂D

)
= cH

(
∂ Pr34

∂kN
/

∂ Pr4

∂kN
· f (D− kH ;kN)− f (D;kN)

)
. (25)

1.5 Comparison to Standard Model

The first-order conditions are

−∂E [J]
∂D

= c0 Pr 4 + cH Pr 3 + cP Pr 2−U ′ (D) , (26)

∂E [J]
∂kH

= c0 Pr 4− cH Pr 4−bH , (27)

∂E [J]
∂kP

= c0 Pr 4 + cH Pr 3− cP Pr 34−bP, (28)

∂E [J]
∂kN

= ac0 Pr 4 +acH Pr 3 +acP Pr 2−acN−bN . (29)

Setting the first order conditions to zero and solving the system yields U ′ (D) = bP + cP Pr234 with

Pr 4 =
bH

c0− cH
, (30)

Pr 34 =
bP−bH

cH− cP
, (31)

Pr 234 =
bN
a + cN−bP

cP
. (32)

1.6 Proof of Proposition 4

The proof starts from the assumption that kP · kN > 0, and shows that this implies a specific re-
lation for bP,cP,bN ,cN . Thus, this relation is a necessary condition for both capacities being
strictly positive. The objective is to maximize E

[
Jmul] := ∑t E [Jt ]−∑ j b jk j, where E [Jt ] =

Ut (Dt)−∑ j c jE
[
x jt
]
− c0E [x0t ], and excess demand at time t is x0t = max

{
Dt−∑ j x jt ,0

}
. For

convenience, we define U ′t (Dt) := ∂Ut(Dt)
∂Dt

. In Stages 2 to 4, this additive separable structure allows
to maximize E [Jt ] separately for each period. Since kN > 0 by assumption, we can rewrite the
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one-period results from (4) and (5) with time index, and obtain the derivatives

E [x0t ] = E [Dt− xPt− x̃Nt− xHt |Ω4t ]Pr 4t , (33)

E [xHt ] = kH Pr 4t +E [Dt− xPt− x̃Nt |Ω3t ]Pr 3t , (34)

−∂E [Jt ]

∂Dt
= cH Pr 3t + c0 Pr 4t−U ′t (Dt) , (35)

∂E [Jt ]

∂xPt
= cH Pr 3t + c0 Pr 4t− cP. (36)

Setting (35) to zero implies that ∀t : U ′t = cH Pr3t +c0 Pr4t . For an internal optimum, (36) is equal
to zero as well, while for a corner solution xPt = kP. Denote the subset of all periods with a corner
solution by L, and |L| is the number of periods in L. In Stage 1, the first-order condition for kP then
simplifies to

∂E
[
Jmul]

∂kP
= cH ∑

t∈L
Pr
3t
+c0 ∑

t∈L
Pr
4t
−bP−|L|cP = 0. (37)

This condition is satisfied for at least one kP > 0 as we assumed a positive partially dispatch-
able capacity to be optimal. Moreover, (35) being zero in any period implies ∑t∈LU ′t (Dt) =

cH ∑t∈L Pr3t +c0 ∑t∈L Pr4t . We thus obtain ∑t∈LU ′t (Dt) = bP + |L|cP. The left-hand side of this
equation depends on the values Dt . Since the optimal Dt depend on the cost parameters in turn,
this is actually an equation that expresses a specific relation of the costs parameters. Both tech-
nology types are only employed in this boundary case. This shows that positive capacities of all
technology types can only be optimal if cost parameters are in a specific relation to the optimal
demand profile.

1.7 Proof of Proposition 5

Whereas x̃N ≤ kN is the available production of non-dispatchable technologies, xN ≤ x̃N denotes
the actual output. Stage 4 is extended to maxxN ,xH J s.t. xN ≤ x̃N ,xH ≤ kH . The optimum depends
on the random event: If x̃N ∈ Ω1 or x̃N ∈ Ω2, then xN = D− xP,xH = x0 = 0; if x̃N ∈ Ω3, then
xN = x̃N ,xH = D− xP− x̃N ,x0 = 0; if x̃N ∈ Ω4, then xN = x̃N ,xH = kH ,x0 = D− xP− x̃N − kH .
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Thus,

E [x0] = E [D− xP− x̃N− kH |Ω4]Pr 4, (38)

E [xH ] = E [D− xP− x̃N |Ω3]Pr 3 + kH Pr 4, (39)

E [xN ] = E [x̃N |Ω3]Pr 3 +E [x̃N |Ω4]Pr 4 +(D− xP)Pr 12, (40)

E [J] = U (D)−∑
j

b jk j− cPxP

−cN (E [x̃N |Ω3]Pr 3 +E [x̃N |Ω4]Pr 4 +(D− xP)Pr 12)

−cH (kH Pr 4 +E [D− x̃N− xP|Ω3]Pr 3)

−c0E [D− x̃N− xP− kH |Ω4)Pr 4. (41)

The derivatives for the remaining decision variables are:

−∂E [J]
∂D

= cN Pr 12 + cH Pr 3 + c0 Pr 4−U ′ (D) , (42)

∂E [J]
∂xP

= cN Pr 12 + cH Pr 3 + c0 Pr 4− cP, (43)

∂E [J]
∂kH

= −bH− cH Pr 4 + c0 Pr 4, (44)

∂E [J]
∂kP

= cN Pr 12 + cH Pr 3 + c0 Pr 4−bP− cP, (45)

∂E [J]
∂kN

= a(cH− cN)Pr 3 +a(c0− cN)Pr 4−bN . (46)

Setting the last two expressions to zero and using Pr12 = 1−Pr3−Pr4, Pr3+Pr4 = Pr34 yields an
overdetermined equation system (two equations for Pr34). This can only be solved for a boundary
case with specific cost parameters.

1.8 Proof of Proposition 6

The analysis of the case of perfect correlation is equivalent until the first-order conditions need to
get determined in Stage 1. Condition (9) changes to

∂E [J]
∂kN

= a3cH Pr 3 +a4c0 Pr 4−bN−acN . (47)

The derivatives (47) and (10) cannot become zero at the same time. The only exception is the
boundary case, where the difference between partially and non-dispatchable LRMC becomes ex-
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actly ∆C = Φ, with

Φ :=
a−a3

a3

(
bN

a
+ cN

)
+

a3−a4

a3
c0 Pr 4. (48)
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2 The Case of Perfectly Correlated Random Generation Units

The model in Eisenack and Mier (2019) focuses on an important special case for the random vari-
able: marginal generating units are stochastically independent. Another (polar) case is to assume
that marginal generating units are perfectly correlated, that is, each unit produces the same amount
of output at a given point in time. This case of supply uncertainty has not been considered in the
peak-load pricing literature to our knowledge so far. This technical appendix presents the results
for the correlated case, and describes similarities and differences to the case of stochastically inde-
pendent generation units. We are optimistic that if some results hold for both extremes, they might
be robust to more general conditions.

2.1 Production and Capacity Decisions

As in the case of stochastically independent correlated generation units (case of independence),
we define x̃N =

´ kN
0 ω (z)dz, where ω (z) are stochastically identically distributed random vari-

ables with realizations ω (z) ∈ [0,1] and availability factor a = E [ω (z)]. In contrast to the case of
independence, we now assume that production of marginal generating units is perfectly correlated,
i.e., that each unit z produces the same output at a given point in time (case of perfect correlation).
It will be convenient to denote average conditional production by ac := E[x̃N |Ωc]

kN
.

The analysis of the case of perfect correlation is equivalent to the case of independence until
the first-order conditions need to get determined in Stage 1. We obtain

−∂E [J]
∂D

= cH Pr 3 + c0 Pr 4−U ′ (D) (49)

∂E [J]
∂kN

= a3cH Pr 3 +a4c0 Pr 4−bN−acN , (50)

∂E [J]
∂kP

= cH Pr 3 + c0 Pr 4−bP− cP, (51)

∂E [J]
∂kH

= −cH Pr 4 + c0 Pr 4−bH . (52)

Again, the first-order conditions (50) and (51) cannot become zero at the same time. The only
exception is the boundary case, where the difference between partially and non-dispatchable long-
run marginal costs (LRMC) becomes exactly ∆C = Φ, with

Φ :=
a−a3

a3

(
bN

a
+ cN

)
+

a3−a4

a3
c0 Pr 4. (53)

The next step is to determine whether a capacity decision with kP > kN = 0 or with kN > kP = 0
is optimal. Start with kP > kN = 0 and denote results for this case with the superscript P. We
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know that xP
P + xP

H = DP. This yields x0 = 0 and Pr4 = 0. From bP + cP < bH + cH , we obtain
kH = 0 and Pr3 = 0. As excess capacity has no benefits but costs, we have xP

P = kP
P = DP and

JP :=U
(
DP)− (bP + cP)DP, where DP is characterized by U ′

(
DP)= bP + cP.

Next consider kN > kP = 0 and denote results with the superscript N. Solving the first-order
conditions (52) and (50) for Pr4 and Pr3, respectively, yields

Pr 4 =
bH

c0− cH
, (54)

Pr 3 =
bN +acN−a4c0 Pr4

a3cH
. (55)

Using (54) and (55) in (49), yields DN , characterized by U ′
(
DN) = bN

a + cN + Φ. We obtain
JN := U

(
DN)−U ′

(
DN)DN . Demand is optimally scheduled so that marginal utility is equal to

the LRMC of non-dispatchable technologies plus a mark-up Φ. We thus call Φ the correlation

mark-up. Its sign is generally inconclusive. The correlation mark-up reflects the effect of raising
capacity of non-disptachables on the different events. If an additional marginal generating unit is
employed in the case of independence, then dE[x̃N |Ωc]

dkN
= a for all interval of events Ωc. In the case

of perfect correlation, however, it also depends on scheduled demand how expected conditional
output changes.

By denoting ∆U :=U
(
DN)−U

(
DP) and ∆D := DN−DP, it can be verified that JN = JP if

∆C = Ψ := Φ+
U ′
(
DN)∆D−∆U

DP . (56)

In addition, observe the following. Consider the boundary case with ∆C = Φ. It follows that
U ′
(
DN)=U ′

(
DP) and, thus, ∆D,∆U = 0, because the differences in scheduled demand and utility

vanish if the marginal utility without any partially dispatchable capacity is the same as without any
non-dispatchable capacity. We obtain Ψ = Φ. This yields an analogue to Proposition 1 in Eisenack
and Mier (2019):

Proposition. In the case of perfect correlation, the following cases can be distinguished:

(i) If ∆C < Φ, then xP = kP = D and kN = kH = 0 with U ′ (D) = bP + cP and Pr3 = Pr34 = 0.

(ii) If ∆C > Φ, then kP = 0 and kN ,kH > 0 with U ′ (D) = bN
a + cN +Φ and Pr4 =

bH
c0−cH

∈ (0,1),

Pr34 =
bN
a +cN−bH

cH
.
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2.2 Special Case of Uniform Distribution

The case of perfect correlation can be further illustrated if we additionally assume that output x̃N is
uniformly distributed on [0,kN ] and kP = 0 (see Figure 1).1 Then, a = 1/2 and some equations can
be explicitly solved (see Figure 1, lower panel). In the upper panel, the vertical dotted lines separate
the three possible events: excess demand (Ω4), highly dispatched (Ω3), and non-dispatched (Ω1).
For example, a4kN is exactly in the middle between the lower and the upper bound of Ω4.

Fig. 1: Illustration of probabilities for a uniform distribution (if a3 < a). The probability density
f (x̃N ;kN) is plotted at the upper panel (vertical dashed line).

The relation a4 < a34 < a,a3 holds for any proper distribution, but the relation between a3 and a

is generally inconclusive. For a uniform distribution, it can further be verified that a3 Pr3+a4 Pr4 =

a34 Pr34. Using this in (53) and subsequently substituting (54) and (55), yields

Φ =
a−a34

a34

(
bN

a
+ cN

)
+

a34−a4

a34
bH . (57)

Thus, the correlation mark-up is strictly positive for the case of perfect correlation and a uniform
distribution. With the solutions from the lower panel in Figure 1, (57) can be rearranged as

ΦD = (kN−D)

(
bN

a
+ cN

)
+bHkH . (58)

This shows that revenues from charging scheduled demand at the level of the correlation mark-
up would cover the capacity costs of highly dispatchable technologies plus the LRMC of non-
dispatchable capacity above demand. The correlation mark-up is larger, if the optimum requires
more highly dispatchable capacity or more non-dispatchable capacity in excess.

1 Recall that kP = 0 leads to Pr2 = 0.
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2.3 Comparative Statics of Pr3,Pr34,Pr4

Compared to the case of independence, we now obtain a stronger result for the comparative statics
of Pr3 w.r.t. kN . This holds for any distribution f . As we can write x̃N = ψkN for one representative
generating unit ψ , we can transform the random variable. Denote the probability density function
of ψ by fω (ψ), which is independent from kN . Then, f (x̃N ;kN) = fω (ψ) · 1

kN
. This yields

Pr 3 =

ˆ D

D−kH

f (x̃N ;kN)dx̃N

=

ˆ D/kN

(D−kH)/kN

fω (ψ)dψ, (59)

∂ Pr3

∂kN
= fω (D/kN)

(
− D

k2
N

)
− fω ((D− kH)/kN)

(
−D− kH

k2
N

)
= f (D− kH ,kN)kN

D− kH

k2
N
− f (D,kN)kN

D
k2

N

= − f (D;kN)D− f (D− kH ;kN)(D− kH)

kN
. (60)

This expression is positive iff f (D− kH ,kN)(D− kH)> f (D,kN)D. Thus, we obtain the values in
Table 3.

If we additionally assume that x̃N is uniformly distributed, i.e., f (D;kN) = f (D− kH ;kN), we
obtain a closed-form result, so that ∂ Pr3

∂kN
> 0 and ∂ Pr3

∂D = 0.

kN kH D
Pr4 (−) (−) (+)
Pr34 (−) 0 (+)
Pr3 #1 (+) #2

#1
(−) iff f (D;kN)D > f (D− kH ;kN)(D− kH)

#2
(−) iff f (D;kN)< f (D− kH ;kN)

Tab. 3: Comparative statics of probabilities

2.4 Comparative Statics of kN,kH ,D

For the case of perfect correlation, unambiguous results are more difficult to obtain. Here, we
concentrate on the special case of uniformly distributed marginal generating units. For parsimony,
we use the shortcuts U ′ =U ′ (D) and U ′′ =U ′′ (D) subsequently.

The comparative statics are determined from the equation system following from the total
differential of the first-order conditions (50), (52), and (49), here repeated as F = (FN ,FH ,FD)

t = 0
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∂/∂kN ∂/∂kH ∂/∂D

FN − cH kH (2D−kH )+c0(D−kH )2

k3
N

− (c0−cH )(D−kH )

k2
N

c0D−(c0−cH )kH
k2

N

FH − (c0−cH )(D−kH )

k2
N

− (c0−cH )
kN

(c0−cH )
kN

FD − c0D−(c0−cH )kH
k2

N
− (c0−cH )

kN

c0
kN
−U ′′

∂/∂bN ∂/∂cN ∂/∂bH ∂/∂cH ∂/∂c0

FN −1 −a 0 a3 Pr3 a4 Pr4

FH 0 0 −1 −Pr4 Pr4

FD 0 0 0 Pr3 Pr4

Tab. 4: Further partial derivatives of FN ,FH ,FD.

with

FN := cHa3 Pr 3 + c0a4 Pr 4−bN− cNa, (61)

FH := (c0− cH)Pr 4−bH , (62)

FD := cH Pr 3 + c0 Pr 4−U ′. (63)

This proof becomes more complicated than the proof for the case of independence, because the
Jacobian J (F) has no diagonal form. On the other hand, because ω is uniformly distributed, we
can use the explicit expressions from Figure 1, so that, e.g.,

FN = cH
1
2

2D− kH

kN

kH

kN
+ c0

1
2

D− kH

kN

D− kH

kN
−bN−acN . (64)

We obtain all derivatives in Table 4 in the same way.

For each parameter of interest, the total differential leads to a system of three equations. We
solve these systems with Cramer’s rule. For example, the following equation system needs to be
solved with Cramer’s rule to determine the comparative statics with respect to c0:

−∂FN

∂c0
=

∂FN

∂kN

dkN

dc0
+

∂FN

∂kH

dkH

dc0
+

∂FN

∂D
dD
dc0

, (65)

−∂FH

∂c0
=

∂FH

∂kN

dkN

dc0
+

∂FH

∂kH

dkH

dc0
+

∂FH

∂D
dD
dc0

, (66)

−∂FD

∂c0
=

∂FD

∂kN

dkN

dc0
+

∂FD

∂kH

dkH

dc0
+

∂FD

∂D
dD
dc0

. (67)

The determinant of the Jacobian evaluates to

det(J (F)) =−cH (c0− cH)D2

k4
N

U ′′ > 0. (68)
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As we are only interested in the signs of the solutions, we can focus the further proof on the signs
of the determinants of the matrices where the appropriate column of the Jacobian is replaced by
the negative partial derivatives w.r.t. the parameter of interest. We obtain Table 5, where .

= denotes
equivalence in the algebraic sign.

∂kN/∂
.
= ∂D/∂

.
=

bN − (c0−cH )(−U ′′kN+cH)
k2

N
< 0 − cH (c0−cH )D

k3
N

< 0

cN − (c0−cH )(−U ′′kN+cH)
k2

N
a < 0 − cH (c0−cH )D

k3
N

a < 0

bH − (c0−cH )(U ′′kN(D−kH )+cH kH)
k3

N
− cH (c0−cH )D

k3
N

kH < 0

cH − (c0−cH )[U ′′kN
1
2 ((D−kH )2+D2)+cH

1
2 (2D−kH )kH ]

k4
N

− cH (c0−cH )D
k3

N

1
2 (2D−kH )kH

k2
N

< 0

c0 − (c0−cH )(−U ′′kN+cH)
k2

N

1
2 (D−kH )2

k2
N

< 0 − cH (c0−cH )D
k5

N

1
2 (D−kH )2

k2
N

< 0

∂kH/∂
.
=

bN − (c0−cH )(U ′′kN(D−kH )+cH kH)
k3

N

cN − (c0−cH )(U ′′kN(D−kH )+cH kH)
k3

N
a

bH − cH (c0−cH )k2
H−U ′′kN(cH (2D−kH )kH+c0(D−kH )2)

k3
N

< 0

cH − cH (c0−cH )k2
H (2D−kH )−U ′′[cH (2D−kH )kH+c0(D2+(D−kH )2)]kN(D−kH )

2k5
N

< 0,

c0 − (c0+cH )(U ′′kN(D−kH )+cH kH)
k3

N

1
2 (D−kH )2

k2
N

Tab. 5: Signs of the derivatives of kN ,kH ,D w.r.t. bN ,cN ,bH ,cH ,c0

The ambiguous cases can be further analyzed as follows. Note that dkN
dbH

, dkH
dbN

, dkH
dcN

, dkH
dc0

< 0 iff

0 < U ′′kN (D− kH)+ cHkH . (69)

Using Figure 1, we can resubstitute for Pr3,Pr4 to obtain

−U
′′

<
cHkH

kN (D− kH)
=

cHkH/kN

kN (D− kH)/kN
=

cH Pr3

kN Pr4
. (70)

The expression on the right-hand side is increasing in kH , but decreasing in kN ,D. We also obtain
dkN
dcH

< 0 iff

0 < U ′′kN
1
2

(
(D− kH)

2 +D2
)
+ cH

1
2
(2D− kH)kH , (71)
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which can be solved (using Figure 1) to obtain

−U
′′

<
cH

kN

1
2 (2D− kH)kH

1
2 (D− kH)

2 + 1
2D2

=
cH

kN

1
2

2D−kH
kN

kH
kN

1
2

D−kH
kN

D−kH
kN

+ 1
2

D
kN

D
kN

=
cH

kN

a3 Pr3

a4 Pr4+a34 Pr34
. (72)

By differentiation we obtain that the right-hand side is increasing in kH , but decreasing in kN ,D.
The comparative statics for capacities and scheduled demand are summarized in Table 6.

In contrast to the case of independence, scheduled demand also depends on bH ,cH ,c0 (via the
correlation mark-up Φ). As a result, non-dispatchable and highly-dispatchable technologies can
be complements with respect to bH ,cH ,c0.

bN ,cN bH ,cH c0
kN (−) #4,#5 (−)
kH #4 (−) #4

D (−) (−) (−)
#4

(−) iff −U ′′/cH < kH/kN (D− kH)

#5
(−) iff −U ′′/cH <

(
D2− (D− kH)

2
)
/kN

(
D2 +(D− kH)

2
)

Tab. 6: Comparative statics of capacities and scheduled demand

2.5 Costs Recovery

Comparing the case of independence and the case of perfect correlation, there is no difference in
costs recovery for partially and highly dispatchable technologies: partially dispatchable technolo-
gies recover exactly costs, whereas highly dispatchable technologies fail to recover costs. Even
with the correlation mark-on Φ on the price, we have p = U ′ (D) = bH + cH Pr34 =

bN
a + cN +Φ

and thus a price below LRMC of highly dispatchable technologies.
It is more complicated for non-dispatchable technologies. The mark-up could principally im-

prove the possibility of costs recovery. We obtain

E [DN ] = E [x̃N |Ω34]Pr 34 +E [D|Ω1]Pr 1, (73)

E [πN ] = −(bN/a+ cN)(E [x̃N ]−E [DN ])+ΦE [DN ] . (74)

The first (negative) term in (74) represents the costs from producing more output than can
be sold. The second term represents the adjustments from the correlation mark-up Φ. Thus,
if Φ ≤ 0, non-dispatchable capacities will never recover costs. A positive correlation mark-up,
however, might be sufficient to cover the loss from producing more output with non-dispatchable
technologies than can be sold. Yet, the zero profit condition is only satisfied in the boundary case,
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where

Φ

bN/a+ cN
=

E [x̃N ]−E [DN ]

E [DN ]
, (75)

that is, if the mark-up of non-dispatchable technologies in relation to LRMC is exactly equal to the
relative excess production.

If it is additionally assumed that marginal generation units are uniformly distributed, we know
that Φ > 0 and obtain a stronger result. Using (57), we can rewrite (74) as follows:

E [πN ] = −
(

bN

a
+ cN

)
(E [x̃N ]−E [DN ])+ΦE [DN ]

= −
(

bN

a
+ cN

)
E [x̃N ]+

(
bN

a
+ cN

)
E [DN ]

+

(
bN

a
+ cN

)
a−a34

a34
E [DN ]+bH

a34−a4

a34
E [DN ]

= −
(

bN

a
+ cN

)
E [x̃N ]+

(
bN

a
+ cN

)
a

a34
E [DN ]+bH

a34−a4

a34
E [DN ]

= −
(

bN

a
+ cN

)
a

a34
a34kN +

(
bN

a
+ cN

)
a

a34
E [DN ]+bH

a34−a4

a34
E [DN ]

=

(
bN

a
+ cN

)
a

a34
(E [DN ]−a34kN)+bH

a34−a4

a34
E [DN ]

=
a

a34

(
bN

a
+ cN

)
(E [DN ]−a34kN)+

a34−a4

a34
bHE [DN ] . (76)

This is positive because a34−a4 =
1
2

kH
kN

> 0 and

E [DN ]−a34kN = E [x̃N |Ω34]Pr
34
+DPr

1
−E [x̃N |Ω34]

= (D−E [x̃N |Ω34])Pr 1

=
1
2

DPr 1 > 0. (77)

To conclude, the correlation mark-up might be sufficient to cover the loss from excess output
during Ω1. Then, depending on the shape of the utility function and the distribution of x̃N , the
price signal leads either to strictly positive profits or to losses for non-dispatchable capacities.
However, the main result from Eisenack and Mier (2019) holds: markets cannot be designed in
a conventional way as soon as non-dispatchable technologies enter the market. For a detailed
analysis of costs recovery under the case of perfect correlation see Mier (2018).
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2.6 Comparison and Extensions

Eisenack and Mier (2019) discuss three model extensions, from whom one is the focus of this
technical appendix itself, and compare their model with the standard literature. The proof for mul-
tiple periods is equivalent for both cases (see Section 1.6). It remains to show that the results hold
when comparing with the standard model without dispatchability types, and under the assumption
of downward-dispatchability.

Peak-load pricing without dispatchability types. The first-order conditions are

−∂E [J]
∂D

= c0 Pr 4 + cH Pr 3 + cP Pr 2−U ′ (D) , (78)

∂E [J]
∂kH

= c0 Pr 4− cH Pr 4−bH , (79)

∂E [J]
∂kP

= c0 Pr 4 + cH Pr 3− cP Pr 34−bP, (80)

∂E [J]
∂kN

= c0a4 Pr 4 + cHa3 Pr 3 + cPa2 Pr 2− cNa−bN . (81)

Setting the first order conditions to zero and solving the system yields U ′ (D) = bP + cP Pr234 with

Pr 4 =
bH

c0− cH
, (82)

Pr 34 =
bP−bH

cH− cP
, (83)

Pr 234 =
bN + cNa

cPa2
− cHa3− cPa2

cPa2 (cH− cP)
bP

−(cH− cP)(c0a4− cPa2)− (cHa3− cPa2)(c0− cP)

cPa2 (cH− cP)(c0− cH)
bH . (84)

Under certain costs constellations, which are again not a boundary case, we have Pr4 < Pr34 <

Pr234.

Downward-dispatchability. The relevant derivatives are

∂E [J]
∂kN

= (cH− cN)a3 Pr 3 +(c0− cN)a4 Pr 4−bN . (85)

∂E [J]
∂kP

= cN Pr 12 + cH Pr 3 + c0 Pr 4−bP− cP, (86)

As in Section 2.1, setting the two expressions to zero and using Pr12 = 1− Pr3−Pr4 yields an
overdetermined equation system (two equations for Pr3). This can only be solved for a boundary
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case with specific cost parameters.
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