Microeconomics

 WS 2006/07Harald Grethe
epartment of International Agricultural Trade and Development

Sheets 3: Chapter 5, Income and Substitution Effects

Outline

Part II: Choice and Demand

1. Preference and Utility
2. Utility Maximization and Choice
3. Income and Substitution Effects

- Effects of a Change in Income (Graphically)
- Effects of a Change in Own Price (Graphically)
- Graphical Derivation of the Demand Curve
- Graphical Deriv. of the Compensated Demand Curve
- Mathematical Derivation of the Price Response
- Elasticities
- Consumer Surplus/Compensating Variation

4. Demand Relationships among Goods

Microeconomics, HU WS 2006/07, Sheets 3, H. Grethe

To Start with: Demand Functions

- $\mathrm{x}_{\mathrm{i}}{ }^{*}=\mathrm{x}_{\mathrm{i}}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}, \mathrm{I}\right)$
- or $\mathbf{x}^{*}=\mathbf{x}\left(\mathbf{p}_{\mathbf{x}}, \mathbf{p}_{\mathbf{y}}, \mathbf{I}\right)$ and $\mathbf{y}^{*}=\mathbf{y}\left(\mathbf{p}_{\mathbf{x}}, \mathbf{p}_{\mathbf{y}}, \mathbf{I}\right)$
- Homogeneity (Homogenität)?
- Think graphically....
- Demand functions are homogeneous of degree zero (homogen vom Grade null) in income and prices
- Generally:
- $x_{i}^{*}=x_{i}\left(p_{1}, p_{2}, \ldots, p_{n}, I\right)=x_{i}\left(t_{1}, \mathbf{t p}_{2}, \ldots, \mathbf{t p}_{n}, t I\right)$
- For our Cobb Douglas case?
- Freedom of money illusion (Freiheit von Geldillusion)

Microeconomics, HU WS 2006/07, Sheets 3, H. Grethe

Effects of a Change in Income (Graphically)

- $\mathbf{x}^{*}=\mathbf{x}\left(\mathbf{p}_{x}, \mathbf{p}_{y}, \mathbf{I}\right)$
- We look at

$$
\begin{gathered}
\frac{\partial \mathrm{x}}{\partial \mathrm{I}} \\
\frac{\partial \mathrm{x}}{\partial \mathrm{I}} \geq 0 ? \\
\frac{\partial \mathrm{x}}{\partial \mathrm{I}} \leq 0 ?
\end{gathered}
$$

Microeconomics, HU WS 2006/07, Sheets 3, H. Grethe

> Effects of a Change in Income (Graphically)

- An increase in income for normal goods: graph on the blackboard (Figure 5.1 in the book on page 124)

If $\frac{\partial \mathrm{x}}{\partial \mathrm{I}} \geq 0$ over some range, x is a normal good over that range

- An increase in income for a normal and an inferior good: graph on the blackboard (Figure 5.2 in the book on page 125)

If $\frac{\partial \mathrm{x}}{\partial \mathrm{I}}<0$ over some range, x is an inferior good over that range

Effects of a Change in Own Price (Graphically)

- A fall in the price of x : graph on the blackboard (Figure 5.3 in the book on page 126)
- x is increasing for two reasons:
- The substitution effect (Substitutionseffekt)
- Along the indifference curve
- The income effect (Einkommenseffekt)
- "Jump" to a higher indifference curve, as the fall in price implies a higher real income
- For a normal good, the substitution and the income effect work in the same direction

$$
\frac{\partial \mathrm{x}}{\partial \mathrm{p}_{\mathrm{x}}}<0
$$

Effects of a Change in Own Price (Graphically)

- An increase in price: Figure 5.4 in the book (p. 127)
- An increase in the price of x being an inferior good: graph on the blackboard
- For an inferior good, the substitution and the income effect work in the opposite direction

Microeconomics, HU WS 2006/07, Sheets 3, H. Grethe

Deriving the Demand Curve Graphically

- Graph on the blackboard (Figures 5.5 to 5.7 in the book on pages 129-133)
- Normal demand curve:
- "Marshallian" demand curve

$$
\mathrm{x}=\mathrm{x}\left(\mathrm{p}_{\mathrm{x}}, \overline{\mathrm{p}}_{\mathrm{y}}, \overline{\mathrm{I}}\right)
$$

- Can be observed in the market
- Compensated demand curve
- "Hicksian" demand curve $\mathrm{x}^{\mathrm{c}}=\mathrm{x}\left(\mathrm{p}_{\mathrm{x}}, \overline{\mathrm{p}}_{\mathrm{y}}, \overline{\mathrm{u}}\right)$
- cannot be observed
- Is steeper than the normal demand curve for superior ("normal") goods
- Useful for welfare analysis

Microeconomics, HU WS 2006/07, Sheets 3, H. Grethe

Effects of a Change in Own Price (Graphically)

- An increase in the price of x being a "Giffen" good: graph on the blackboard
- For a Giffen good, the substitution and the income effect work in the opposite direction
\square and the income effect exceeds the substitution effect such that

$$
\frac{\partial \mathrm{x}}{\partial \mathrm{p}_{\mathrm{x}}}>0
$$

Microeconomics, HU WS 2006/07, Sheets 3, H. Grethe

Deriving the Demand Curve Graphically

- Why we don't like concave or kinked indifference curves: graphs on the blackboard
- A mathematical development of demand quantity response to price changes: the Slutsky equation (on the blackboard, pages 135-137)
- Derivation of the compensated demand curve
- The compensated demand curve x_{c} is the first order derivative of the consumer expenditure function with respect to the price of x

Elasticities: Summary

- Measure of the intensity of reaction
- Advantage versus coefficients
- Comparable with different functional forms
- Comparable with different units of measurement
- Easily to grasp intuitively
- Example: income elasticity $\varepsilon_{\mathrm{x}, \mathrm{I}}=\frac{\mathrm{dx} / \mathrm{x}}{\mathrm{dI} / \mathrm{I}}=\frac{\mathrm{dx}}{\mathrm{dI}} \frac{\mathrm{I}}{\mathrm{x}}$
- The percentage change in demand quantity given a one percent change in income

Demand Elasticities

- Which elasticities do we have for
- $\mathbf{x}=\mathbf{x}\left(\mathbf{P}_{\mathbf{x}}, \mathbf{P}_{\mathbf{y}}, \mathbf{I}\right)$
- Own price elasticity of demand (of "quantity demanded")
$\varepsilon_{x, \mathrm{p}_{\mathrm{x}}}=\frac{\mathrm{dx}}{\mathrm{dp}_{\mathrm{x}}} \frac{\mathrm{p}_{\mathrm{x}}}{\mathrm{x}}$
$\varepsilon_{x, \mathrm{p}_{\mathrm{x}}}<-1,($ or $>|-1|):$ demand for x is "elastic"
$\varepsilon_{x, p_{x}}=-1:$ demand for x is "unit - elastic"
$\varepsilon_{\mathrm{x}, \mathrm{p}_{\mathrm{x}}}>-1,($ or $<|-1|):$ demand for x is "inelastic"
$\varepsilon_{\mathrm{x}, \mathrm{p}_{\mathrm{x}}}>0: \mathrm{x}$ is a Giffen good
microeconomics, hu wa 2voovo, sneels 5, H. Grenne

Elasticities: Summary (2)

- Calculation of elasticity from first derivative:
$\mathrm{UK}: \varepsilon_{\mathrm{x}, \mathrm{I}}=0.02 \frac{1000}{100}=0.2 \quad$ for $\mathrm{I}=1,000$
Germany: $\varepsilon_{\mathrm{x}, \mathrm{I}}=10 \frac{2.000}{100.000}=0.2$ for $\mathrm{I}=2,000$
- With a linear functional form, the elasticity changes along the curve
- Other functional forms exist, for example the isoelastic:

$$
\mathrm{x}=25 \mathrm{I}^{0.2}
$$

Microeconomics, HU WS 2006/07, Sheets 3, H. Grethe

Demand Elasticities (2)

- Which elasticities do we have for
- $\mathbf{x}=\mathbf{x}\left(\mathbf{P}_{\mathrm{x}}, \mathbf{P}_{\mathbf{y}}, \mathbf{I}\right)$
- Cross price elasticity of demand for x with respect to the price of y
$\varepsilon_{x, p_{y}}=\frac{d x}{d p_{y}} \frac{p_{y}}{x}$
$\varepsilon_{x, p_{y}}<0: \mathrm{x}$ and y are " gross complements"
$\varepsilon_{\mathrm{x}, \mathrm{p}_{\mathrm{y}}}>0: \mathrm{x}$ and y are "gross substitutes"
Microcconomics, HU WS 2006/07, Sheets 3, H. Grethe

Demand Elasticities (3)

- Which elasticities do we have for
- $\mathbf{x}=\mathbf{x}\left(\mathbf{P}_{\mathrm{x}}, \mathbf{P}_{\mathrm{y}}, \mathbf{I}\right)$
- Income elasticity of demand for x
$\varepsilon_{\mathrm{x}, \mathrm{I}}=\frac{\mathrm{dx}}{\mathrm{dI}} \frac{\mathrm{I}}{\mathrm{x}}$
$\varepsilon_{\mathrm{x}, \mathrm{I}}>1: \mathrm{x}$ is a "luxury"("Luxusgut")
$0<\varepsilon_{x, I}<1$: x is a "necessity"("Sättigungsgut")
$\varepsilon_{\mathrm{x}, \mathrm{I}}<0: \mathrm{x}$ is an "inferior good" ("inferiores Gut")
Microeconomics, HU WS 2006/07, Sheets 3, H. Grethe

Demand Elasticities (4)

- And which elasticities do we have for
- $\mathbf{x}^{\mathrm{c}}=\mathbf{x}\left(\mathbf{P}_{\mathrm{x}}, \mathbf{P}_{\mathrm{y}}, \mathbf{u}\right)$
$\varepsilon_{x^{c}, p_{x}}=\frac{d x^{c}}{d p_{x}} \frac{p_{x}}{x}$, compensated own price elasticity of demand for x
$\varepsilon_{x^{c}, p_{y}}=\frac{\mathrm{dx}^{c}}{\mathrm{dp}_{y}} \frac{p_{y}}{\mathrm{x}}$, compensated cross price elasticity of demand for x
- And how do they differ from the uncompensated price elasticities?
- On the blackboard (page 140-141 in the book)

Relationships among Elasticities

- Homogeneity of demand functions:
- The sum of the income elasticity and all uncompensated price elasticities for one good must be zero
- On the blackboard

Price Elasticity and Total Spending

- What is the relationship between the own price elasticity of a good and the effect of a own price change on total spending on that good?
- On the blackboard
$\frac{\partial \mathrm{E}_{X}}{\mathrm{dp}_{\mathrm{x}}}<0$ if $\varepsilon_{\mathrm{x}, \mathrm{p}_{\mathrm{x}}}<-1$,
if demand is elastic, expenditure decreases with an increasing price
$\frac{\partial \mathrm{E}_{X}}{\mathrm{dp} \mathrm{p}_{\mathrm{x}}}>0$ if $\varepsilon_{\mathrm{x}, \mathrm{p}_{\mathrm{x}}}>-1$,
if demand is inelastic, expenditure increases with an increasing price
Microeconomics, HU WS 2006/07, Sheets 3, H. Grethe

Relationships among Elasticities (2)

- The "Engel Aggregation" (or "Adding Up")
- Marginal expenditure shares must add up to one
- In other words:
- The weighted (by expenditure shares) average on income elasticities for all goods that a person buys must add up to one
- On the blackboard
- We don't deal with the "Cournot Aggregation"

Consumer Surplus and Compensating Variation

- The standard concept of consumer surplus
- Graph on the blackboard
- A more precise welfare measure: the compensating variation (CV)
- Algebraically: $\mathrm{CV}=\mathrm{E}\left(\mathrm{p}_{\mathrm{x}}^{1}, \mathrm{p}_{\mathrm{y}}, \mathrm{u}\right)-\mathrm{E}\left(\mathrm{p}_{\mathrm{x}}^{0}, \mathrm{p}_{\mathrm{y}}, \mathrm{u}\right)$
- Graphically: $\quad C V=\int_{p_{x}^{0}}^{p_{x}^{1}} d E=\int_{p_{x}^{0}}^{p_{x}^{1}} x^{c}\left(p_{x}^{1}, p_{y}, u\right) d p_{x}$
\square On the blackboard!
\square When does the difference matter?
Microeconomics, HU WS 2006/07, Sheets 3, H. Grethe

Price Indices as a Welfare Measure?

Consumer price indices (Verbraucherpreisindex):
Paasche and Laspeyres (on the blackboard)

- Substitution bias:
- The welfare reduction resulting from a price increase as measured by the Laspeyres CPI overestimates the real welfare effect
- The welfare increase resulting from a price decrease as measured by the Laspeyres CPI underestimates the real welfare effect

