3.5 The inverse of a quadratic matrix

Definition: If for a quadratic matrix A there exists a quadratic matrix \underline{A}^{-1} with $\underline{A}^{-1} \cdot \underline{A} = \underline{A} \cdot \underline{A}^{-1} = \underline{E}$, then \underline{A}^{-1} is called the **inverse** of \underline{A} .

A regular matrix has exactly one inverse. If an inverse exists, then the matrix is regular.

$$\underline{\underline{E}}^{-1} = \underline{\underline{E}}$$
$$(\underline{A}^{-1})^{-1} = \underline{\underline{A}}$$

Calculation of the inverse by using elementary transformations of a basis.

(There are other methods we will not deal with here: Gaussian elimination, Cramer's Rule):

Examples:

$$1) \quad \underline{A} = \begin{pmatrix} 4 & 2 \\ 5 & 3 \end{pmatrix}$$

Thus
$$\underline{A}^{-1} = \begin{pmatrix} 3/2 & -1 \\ -5/2 & 2 \end{pmatrix}$$
 (Proof!)

Compare with the coefficient matrix of the first equation system of chapter 3.4

Arrange
$$\Rightarrow \underline{A}^{-1} = \begin{pmatrix} 1/2 & 0 & -1/2 \\ 3 & 2 & -2 \\ 3 & 2 & -3 \end{pmatrix}$$
 (Prove $\underline{A} \cdot \underline{A}^{-1} = ?$)

Matrix equations with the inverse

- Linear equation system $\underline{A} \underline{x} = \underline{b}$
 - (1) Let's suppose \underline{A} is regular, $\rho(\underline{A}) = n, \underline{x} \in \mathbb{R}^n$:

A⁻¹ exists and

 $\underline{A} \underline{x} = \underline{b}$ is equivalent to

 $\underline{\underline{A}^{-1}} \, \underline{\underline{A}} \, \underline{\underline{x}} = \underline{\underline{A}^{-1}} \, \underline{b}$, that means $\underline{\underline{x}} = \underline{\underline{A}^{-1}} \, \underline{\underline{b}}$ is the unique solution of the linear equation system

(2) Now let's suppose \underline{A} is a (r, n)-matrix with $\rho(\underline{A}) =$

$$\rho(\underline{A},\underline{b}) = r < n$$
:

we decompose \underline{A} and \underline{x} (by interchanging the corresponding columns and variables) in $\underline{A} = (\underline{B}, \underline{N})$, so that \underline{B} is a regular matrix, and \underline{x} in \underline{x}_B and \underline{x}_N .

Out of $\underline{A} \underline{x} = \underline{b}$ respectively $\underline{B} \underline{x}_B + \underline{N} \underline{x}_N = \underline{b}$ results via multiplication by \underline{B}^{-1} from the left $\underline{B}^{-1} \underline{B} \underline{x}_B + \underline{B}^{-1} \underline{N} \underline{x}_N = \underline{B}^{-1} \underline{b}$ respectively $\underline{x}_B = \underline{B}^{-1} \underline{b} - \underline{B}^{-1} \underline{N} \underline{x}_N$.

The vector of the basic variables \underline{x}_B is now represented by the vector of the non-basic variables \underline{x}_N , which is equivalent to the general solution of the linear equation system.

• Input / Output-analysis (Part 2) $(\underline{E} - \underline{A}) \underline{x} = \underline{y}$

- (a) \underline{x} is given, \underline{y} is requested: matrix multiplication $\underline{y} = (\underline{E} \underline{A}) \underline{x}$
- (b) \underline{y} is given, \underline{x} is requested: $\underline{x} = (\underline{E} \underline{A})^{-1} \underline{y}$, that means we need to calculate the inverse of $\underline{E} \underline{A}$.