2.3 Funktionen mehrerer reeller Veränderlicher

$$y = f(\underline{x}) = f(x_1 ..., x_n) : M \subset \mathbb{R}^n \to \mathbb{R}$$

eindeutige Abbildung von M in R

2.3.1 Beispiele, Stetigkeit

- Ertragsfunktion
- Graf der Funktion für n = 2 als gekrümmte Fläche darstellbar ("Gebirge")
- Paraboloid $y = x_1^2 + x_2^2$
- Zielfunktion beim Futtermischungsmodell:
 minimale Kosten: 60x₁ + 45x₂ + 36x₃ = f(x₁,x₂,x₃)
 ist eine lineare Funktion

Bemerkungen zur Stetigkeit von Funktionen

n = 1

f(x) stetig in x_0 : Wenn der Abstand von x und x_0 klein ist, so ist auch der Abstand von f(x) und $f(x_0)$ klein.

$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$n > 1$$
 $\underline{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ $\underline{x}^0 = (x_1^0, x_2^0, ..., x_n^0) \in \mathbb{R}^n$ fest

f(\underline{x}) stetig in \underline{x}^0 : Wenn der Abstand von \underline{x} und \underline{x}^0 klein ist, so ist auch der Abstand von f(\underline{x}) und f(\underline{x}^0) klein.

$$\lim_{\underline{x} \to \underline{x}^0} f(\underline{x}) = f(\underline{x}^0)$$

Hierbei wird der Abstand von n-Tupeln über die euklidische Norm definiert

$$\| \underline{x} - \underline{x}^0 \| := \sqrt{\sum_{i=1}^n (x_i - x_i^0)^2}.$$

Heuristik: n = 1 Zeichnen der Kurve ohne "abzusetzen" n = 2 "Funktionshaut ohne Löcher und Risse".

2.3.2 Partielle Ableitung

Steigung der Funktion in Richtung der Achsen partielle Ableitung:

Ableitung der Funktion $f(\underline{x}) = f(x_1, x_2, ..., x_n)$ nach **jeweils einer Variablen**, wobei die anderen Variablen beim Ableiten wie Konstanten behandelt werden.

Definition auch der partiellen Ableitungen erfolgt zuerst lokal an der Stelle $\underline{\mathbf{x}}^0 \in \mathbf{R}^n$ mit Hilfe von Grenzwerten:

$$\lim_{h\to 0} \frac{f\left(x_1^0,\,...,\,x_i^0+h,\,...,\,x_n^0\right)-f\left(x_1^0,\,...,\,\,x_i^0,\,...,\,x_n^0\right)}{h} \ \ \text{für } i=1,\,...,\,n.$$

Bezeichnung:
$$\frac{\partial f}{\partial x_i}$$
 (auch $\frac{\partial}{\partial x_i} f, \frac{\partial y}{\partial x_i}$ bzw. f_{x_i}, f_i)

geometrische Interpretation:

Anstieg der Funktion in Richtung der Achsen.

2. partielle Ableitungen (partielle Ableitungen 2. Ordnung):

$$\frac{\partial^2 f}{\partial x_i \, \partial x_i} := \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) \ \text{in Kurzschreibweise auch } f_{ij} \, ;$$

Es wird also die partielle Ableitung der Funktion nach $\mathbf{x_i}$ noch mal nach der Variablen $\mathbf{x_i}$ partiell abgeleitet.

Insgesamt gibt es n² Ableitungsfunktionen 2. Ordnung:

$$\frac{\partial^{2} f}{\partial x_{1}^{2}}, \quad \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}, \quad \dots, \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}$$

$$\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}, \quad \frac{\partial^{2} f}{\partial x_{2}^{2}}, \quad \dots, \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}, \quad \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}, \dots, \quad \frac{\partial^{2} f}{\partial x_{n}^{2}}$$

Beispiel 1:
$$y = f(x_1, x_2) = x_1^2 + x_2^2$$

$$\frac{\partial f}{\partial x_1} = 2x_1$$
, $\frac{\partial f}{\partial x_2} = 2x_2$

Beispiel 2:
$$f(x_1,x_2) = 5 + 2x_1 + 5x_1^2 + 8x_1x_2 + 7x_2 + 5x_2^2$$

$$\frac{\partial f}{\partial x_1} = 2 + 10x_1 + 8x_2 \quad , \frac{\partial f}{\partial x_2} = 8x_1 + 7 + 10x_2,$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_1} = 10 \qquad \frac{\partial^2 f}{\partial x_1 \partial x_2} = 8$$

$$\frac{\partial^2 f}{\partial x_2 \partial x_1} = 8 \qquad \frac{\partial^2 f}{\partial x_2 \partial x_2} = 10$$

2.3.3 Lokale Extrema bei Funktionen mit mehreren Variablen

(1) Eine Variable: $x \in R$, y = f(x), wir suchen ein lokales (relatives) Maximum bzw. Minimum der Funktion f(x)

notwendige Bedingung: f'(x) = 0,

hinreichende Bedingung: f"(x) < 0 lokales Maximum

bzw. f''(x) > 0 lokales Minimum.

(2) n Variablen: $(x_1, x_2, ..., x_n) = \underline{x} \in \mathbb{R}^n$ Definition:

Die Funktion $f(\underline{x})$ hat in einem inneren Punkt \underline{x}^0 des Definitionsbereiches ein lokales Maximum (bzw. Minimum), wenn eine reelle Zahl $\delta > 0$ existiert mit $f(\underline{x}) \le f(\underline{x}^0)$ (bzw. $f(\underline{x}) \ge f(\underline{x}^0)$) für alle $\underline{x} \in \mathbb{R}^n$ mit $\|\underline{x} - \underline{x}^0\| < \delta$.

$$\begin{split} &\text{Sammelbegriff: lokales Extremum} \\ &\left\{\underline{x} \in R^n \ \big| \ \big\| \ \underline{x} - \underline{x}^0 \ \big\| < \delta \right\} \ \text{heißt Umgebung von} \ \ \underline{x}^0 \in R^n \end{split}$$

Notwendige Bedingung für lokale Extrema:

Satz: Wenn $f(\underline{x})$ im Punkt $\underline{x}^0 \in R^n$ ein lokales Extremum besitzt und in diesem Punkt alle partiellen Ableitungen $\frac{\partial f}{\partial x_i}$ existieren, so

gilt
$$\frac{\partial f}{\partial x_i}$$
 (\underline{x}^0) = 0 $\forall i = 1, ..., n$.

Wir haben n Gleichungen. Die Lösungen dieses Gleichungssystems heißen **stationäre Punkte**.

Im Weiteren sei n = 2, d.h. wir haben zwei Variablen x_1, x_2 .

Dann gibt es eine geometrische Interpretation der notwendigen Bedingungen:

die Tangentialebene an $f(x_1, x_2)$ im Punkt $\underline{x}^0 = (x_1^0, x_2^0)$ ist parallel zur x_1, x_2 – Ebene.

Wir benötigen auch hier eine hinreichende Bedingung für ein lokales Extremum.

Beispiel: Sattelfläche $f(x_1, x_2) = x_1 \cdot x_2$

Hinreichende Bedingungen für lokale Extrema:

 $f(x_1,x_2)$ sei in einer Umgebung eines stationären Punktes $\underline{x}^0 = (x_1^0, x_2^0)$ definiert, stetig, es existieren alle 1. und 2. partiellen Ableitungen und diese seien auch stetig.

Satz: $f(x_1,x_2)$ hat in dem stationären Punkt $\underline{x}^0 = (x_1^0, x_2^0)$ ein lokales Minimum, wenn

$$(1) \quad D = \frac{\partial^2 f}{\partial x_1 \partial x_1} (\underline{x}^0) \cdot \frac{\partial^2 f}{\partial x_2 \partial x_2} (\underline{x}^0) - \left[\frac{\partial^2 f}{\partial x_1 \partial x_2} (\underline{x}^0) \right]^2 > 0$$

und

(2)
$$\frac{\partial^2 f}{\partial x_1 \partial x_1} (\underline{x}^0) > 0.$$

Ist D > 0 und $\frac{\partial^2 f}{\partial x_1 \partial x_1}$ (\underline{x}^0) < 0, so hat f ein lokales Maximum in \underline{x}^0 .

Im Beispiel 2 aus Abschnitt 2.3.2 hatten wir für die Funktion

$$f(x_1,x_2) = 5 + 2x_1 + 5x_1^2 + 8x_1x_2 + 7x_2 + 5x_2^2$$

alle 1. und 2. partiellen Ableitungen bestimmt.

Als notwendige Bedingung erhalten wir das lineare Gleichungssystem

$$2 + 10x_1 + 8x_2 = 0$$

$$7 + 8x_1 + 10x_2 = 0.$$

Als Lösung erhalten wir einen stationären Punkt $\underline{x}^0 = (1, -\frac{3}{2})$.

Die hinreichende Bedingung lautet

(1)
$$D = 10 \cdot 10 - 8^2 = 36 > 0$$
 und

$$(2) \qquad \frac{\partial^2 f}{\partial x_1 \ \partial x_1} = 10 > 0.$$

(1) sichert das Vorliegen eines lokalen Extremums an der Stelle $\underline{\mathbf{x}}^{0}$, aus (2) folgt, dass es sich um ein lokales Minimum handelt.