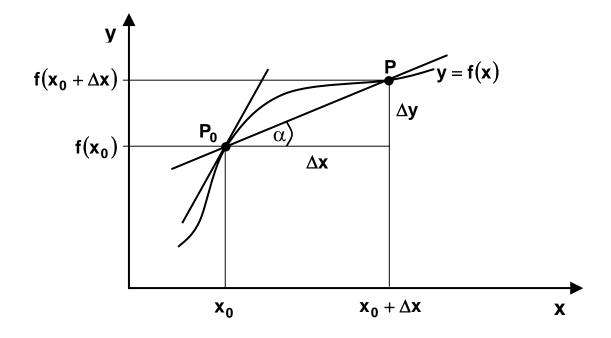
2.2 Differentialrechnung, Integralrechnung

Bei vielen ökonomischen und anderen praktischen Fragestellungen interessiert das Änderungsverhalten von Funktionen.



Differenzenquotient:
$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

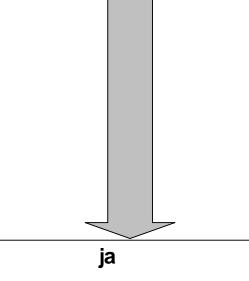
Übergang zum Grenzwert (rechts- und linksseitig)

existiert der Differentialquotient

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

nein

f nicht differenzierbar in x_0



y = |x| x_0 $x_0 = 0$

f differenzierbar in x_0

Der Grenzwert heißt Ableitung der Funktion f im Punkt $\mathbf{x_0}$ mit der Bezeichnung $\mathbf{f'(x_0)}$

(Anstieg, Steigung der Funktion in x_0 ;

Anstieg der Tangente an die Funktion f(x) im Punkt x_0).

Die Funktion y = f(x) heißt differenzierbar, wenn f(x) in allen Punkten des Definitionsbereichs differenzierbar ist.

Die Ableitungen in allen Punkten bilden wieder eine Funktion der Variablen x, die mit f'(x) oder kurz f' (nach Lagrange)

bzw. mit $\frac{dy}{dx}$ (nach Leibnitz) bezeichnet wird.

Technik des Differenzierens:

Ableitung der Grundfunktionen		
f (x)	f'(x)	
x ⁿ	$n \cdot x^{n-1} \qquad \begin{cases} a) & n \in \mathbb{N}, \ x \in \mathbb{R} \\ b) & n \in \mathbb{G}, \ x \neq 0 \\ c) & n \in \mathbb{R}, \ x > 0 \end{cases}$	
e ^x	e ^x	
ln x	$\frac{1}{x}$	
sinx	cosx	
cosx	- sin x	
a ^x	a ^x ·Ina	
log _a x	1 x · ln a	

Ableitungsregeln	
Summenregel	$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$
Produktregel	$[f(x)\cdot g(x)]'=f'(x)\cdot g(x)+f(x)\cdot g'(x)$
Quotientenregel	$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$
Kettenregel	$[g(f(x))]'=g'(f(x))\cdot f'(x)$

Ableitung "verknüpfter" Funktionen

Höhere Ableitungen:

Ableitungen der ersten Ableitung $f'(x) \Rightarrow f''(x)$ zweite Ableitung

3. Ableitung: f''(x)

n. Ableitung: f⁽ⁿ⁾(x)

Anwendungen der Ableitung von Funktionen:

- a) Extremwertuntersuchungen lokales Maximum/Minimum an der Stelle x_0 ($f'(x_0) = 0$ und $f''(x_0) \neq 0$)
- b) Kurvendiskussion

y = f(x) \rightarrow Eigenschaften \rightarrow Graf der Funktion

c) Ökonomie und Naturwissenschaften

Grenzfunktion:

$$G(x) = E(x) - K(x) \rightarrow max$$

Gewinn als Erlös minus Kosten

notwendige Bedingung

$$G'(x)=E'(x)-K'(x)=0$$

bzw. E'(x)=K'(x) Grenzerlös gleich Grenzkosten

Elastizität:

Preiselastizität der Nachfrage (um wie viel % ändert sich die Nachfrage, wenn sich der aktuelle Preis um 1% ändert?)

$$\varepsilon_{n,p} := n'(p) \cdot \frac{p}{n(p)}$$

Wachstumsfunktionen:

exponentiell; mit Sättigung (logistische Funktion, sigmotisch (s-förmig))

Integralrechnung

- (1) Unbestimmtes Integral
 Umkehren des Differenzierens (schwieriger)
 ∫ f(x)dx = {F(x) | F'(x) = f(x)}
 Menge aller Stammfunktionen F von f (additive Konstante c)
- (2) Bestimmtes Integral (Riemannsches Integral) als Grenzwert definiert $\int_a^b f(x) dx$ misst die Fläche zwischen dem Grafen von f und der x-Achse im Bereich von a bis b.
- (3) Berechnung mit einer Stammfunktion

$$\int_{a}^{b} f(x) dx = F(b) - F(a) =: F(x) \begin{vmatrix} b \\ a \end{vmatrix}$$

Beispiel:
$$\int_{1}^{2} 3x^{2} dx = x^{3} \Big|_{1}^{2} = 2^{3} - 1^{3} = 8 - 1 = 7$$