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BOUNDED RECURSIVE STOCHASTIC SIMULATION 
– a simple and efficient method for pricing complex American type options – 

Summary 

This paper gives an overview of simulation based procedures, which have proved to be effi-
cient in valuing American options and therefore real options. Many of them integrate sequen-
tial stochastic simulations in the backward recursive programming approach to determine the 
early-exercise frontier. They subsequently value the option by initiating a Monte-Carlo simu-
lation from the valuation date of the option. It turns out that one approach (Grant et al., 1997) 
is especially simple. We are able to enhance its efficiency by stripping it of some time con-
suming but unnecessary simulation steps. Our simplified approach could be called ”Bounded 
Recursive Stochastic Simulation“. 

1 Introduction 

Capital investments represent an equally important and difficult part of entrepreneurial deci-
sion-making. On the one hand, the consequences of investment decisions extend far into the 
future and may determine the strategic position of a firm for a long time. This is due to the 
fact that any investment is at least partly irreversible. On the other hand, there is always un-
certainty with regard to future returns. However, it should be noted that even though (poten-
tial) investors run a risk, they also enjoy some sort of flexibility. They have for instance the 
choice of different dates to carry out an investment. Therefore, in the context of investment 
planning two questions have to be answered: (1) What is the expected value of an investment? 
(2) What expected present value of returns should trigger immediate investment? 

Traditionally the net present value (NPV) has been used to answer these questions. Ac-
cording to this approach, the value of an investment opportunity is represented by the ex-
pected present value of investment cash flows minus investment costs. The investment should 
be carried out as soon as the investment costs are covered. However, the ”New Investment 
Theory“ (or: Real Options Approach) posits that the flexibility to defer an investment may 
have a positive value. This value will be lost once the investment is carried out. Consequently, 
this value, in addition to the investment costs, has to be covered by the present value of in-
vestment returns1. Intuition is quite direct: Given a deferrable investment opportunity, it is not 
simply a question of whether to invest or not. Rather we have to make a choice between sev-
eral mutually exclusive opportunities over time. The values of subsequent investment oppor-
tunities represent opportunity costs to an immediate investment. These opportunity costs, and 
therefore the monetary value of the flexibility of waiting, can be quantified by using proce-
dures derived from the pricing of financial options. This is feasible because there is a close 
analogy between investment opportunities (real options) and financial options: The opportu-
nity to delay an investment can be compared to a call option. The investor has the right, but 
not the obligation to buy a (real) asset at a given ”strike price“ (i.e. investment costs) and to 
receive hereby a stochastic value (i.e. expected present value of investment returns). The pe-

                   
1 Cf. e.g. Dixit and Pindyck (1994), Trigeorgis (1996), McDonald and Siegel (1986) or Amram and Kulatilaka (1999). 
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riod for which the decision to invest can be delayed can be interpreted as the lifetime of the 
option. Since investment options can be usually exercised at several dates during their life-
time, real options are usually of American type. Thus the relatively simple valuation of Euro-
pean style options is of minor importance for real options. 

One difficulty in applications of the real options approach is caused by the fact that there 
rarely is a closed form analytical solution for complex investment options. Furthermore, most 
numerical valuation techniques known from finance option theory are regularly not applicable 
either. There are two main problems concerning these procedures: Some of them lack suffi-
cient flexibility with regard to the form of stochastic processes, the number of stochastic vari-
ables and possible interactions between different real options (analytical methods, finite dif-
ference procedures, lattice approaches). Others are, on their own, not capable of pricing 
American style options at all (standard simulation procedures)2. For the valuation of simple 
financial options (on stocks) these restrictions will not often cause problems, because (1) the 
assumption of Geometric Brownian Motion (GBM)3 appears plausible and because (2) stock 
prices are observed directly and presumably represent the only source of uncertainty. It is 
therefore possible to use lattice approaches or difference procedures to price regular American 
type financial options. In order to price complex financial options or real options, however, 
one must search for different valuation methods. 

The value of a real asset over time (e.g. the expected present value of the investment re-
turns of an industrial plant) cannot be observed directly. Therefore, we must consider the fac-
tors which determine the value of the real asset, i.e. the ”disaggregate state variables“ (e.g. 
gross margins or revenues and variable costs of the production activity). Since multiple (sto-
chastic) state variables are common in real options problems, possible correlations between 
these variables have to be considered as well. Furthermore, the assumption that the value of 
real assets or their disaggregate components follow GBM is hardly realistic (see Lund, 1993). 
GBM implicitly assumes constant relative changes (e.g. yield rates) and the non-occurrence of 
negative values of the stochastic variable. Neither assumption may hold for real options: dis-
aggregate components of the value of real assets such as gross margins may oscillate around a 
more or less constant level; that is to say, they will approach the original level again after a 
stochastic deviation, which may also have resulted in a temporary negative value. Such be-
haviour cannot be represented by GBM. One has to resort to mean reversion processes4. Re-
cent research shows that the kind of stochastic process has a decisive influence both on option 
prices and critical early-exercise values (see e.g. Odening et al., 2001). 

It has long been noted that stochastic simulation procedures can handle multiple stochastic 
variables, alternative stochastic processes etc. quite easily. However, they are not directly 
applicable to American type options. The most successful way to handle American type op-
tions is to integrate a stochastic simulation of the state variable(s) into a more complex, back-

                   
2  A survey of various analytical and numerical option pricing procedures can be found in Hull (2000, chapter 16). The meth-

ods described are originally designed for pricing financial options. An application of these methods to real options is given 
by Trigeorgis (1996, chapter 10). 

3  GBM is a non-stationary Markov-Process. Consequently, the future value of a stochastic variable following GBM only de-
pends on the last observed value, i.e. the current value represents all relevant information of the past.  

4  The identification of stochastic processes can be based on statistical test procedures. For example, unit-root tests can be 
used for testing whether a stochastic variable follows a random-walk (e.g. GBM) or a stationary process (e.g. mean-
reversion processes) (see Pindyck and Rubinfeld, 1998). Time series models (e.g. ARIMA-processes) can be identified us-
ing a Box-Jenkins test (Box and Jenkins, 1976). 
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ward-recursive framework of option pricing. This general approach is the subject of this paper 
which studies the pricing of American type options in the context of real options. However, 
since real options are always complex options, the findings are equally useful for the pricing 
of complex financial options.  

An outline of the overall problem concerning the valuation of American type options is 
presented in Section 2. Given the important role stochastic simulation plays in more sophisti-
cated methods of option pricing, Section 3 briefly sets forth the basics of stochastic simula-
tion in the context of option pricing. It then describes and classifies the different methods de-
veloped up to now which integrate - in one way or another - stochastic simulation into a more 
complex framework to value American type options. Section 4 describes one especially sim-
ple and straightforward method in greater detail. This method integrates sequential stochastic 
simulations in a backward recursive programming approach to determine the critical early-
exercise path. It will hereafter be called Bounded Recursive Stochastic Simulation (BRSS). 
Exemplary results are demonstrated in Section 5. For validation purposes, we use a straight-
forward exemplary valuation problem for an American type option which can be solved by 
binomial tree methods as well. The paper closes with an outlook emphasizing the need for 
still more complex (agent based) valuation methods, especially if one is to include competi-
tion into the model by modelling price dynamics endogenously (Section 6). However, agent-
dependent option pricing is a problem only of interest in the context of real options and in 
cases where stochastic price processes cannot be identified. 

2 Problems in Valuing American Style Options 

In the case of European type options there is only one question to be answered: (1) What is 
the value of the option? The exercise strategy is known: The option should be exercised at the 
expiry date if the difference between the (market) value of the underlying and the strike price 
is positive. In the case of American type options, which can also be exercised before maturity, 
there is an additional question to be answered: (2) At a given time, at which price of the un-
derlying (i.e. critical early-exercise value) should the option be exercised? Hence, with regard 
to real options we have to answer both questions. 

We first present the principal problem and background of pricing American type (real) op-
tions: Let I be the (constant) investment cost or purchase price of a real asset which generates 
a stochastic expected present value of investment cash flows V. The option to realize the in-
vestment is given in a period [0, T] at discrete potential exercise dates τ, 

,...,,1,0 ττττ ∆⋅Γ∆⋅∆⋅= 5. The number Γ+1 of potential exercise dates is determined by the 
time between two potential exercise dates ∆τ (Γ = T/∆τ). The investment costs are completely 
sunk once the investment is carried out6. We seek both the value of the investment option and 
the critical early-exercise values *

τV  which would trigger an immediate investment at any 
given exercise date τ. According to traditional investment theory, the value of this investment 
opportunity at every potential exercise date equals the positive net present value iτ : 

                   
5  For financial options with continuous exercising opportunities, option pricing based on discrete exercise points would only 

approximate the true value of the option and lead to a low bias because it underestimates the flexibility (see Balmann and 
Mußhoff, 2002). However, it is realistic to assume that real options can only be exercised at a limited number of dates.  

6  If investment costs are not completely sunk, follow-up real options, e.g. the option to abandon etc. will arise which will have 
to be valued simultaneously because of their interactions. 
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),0max( IVi −= ττ  (1) 
Furthermore, traditional investment theory recommends that the investment should be carried 
out as soon as the expected present value of the investment cash flows τV  exceeds the in-
vestment costs I, i.e. as soon as there is a positive net present value (NPV). 

However, using the theory of option pricing we know that the NPV-calculus only takes 
into account one part of the option value, namely the intrinsic value. But an option does not 
have to be exercised at date τ. Therefore, the option also has a continuation value fτ, which 
represents the discounted expectation value of the option, if it is not exercised at time τ, but 
the decision is put off until the next early-exercise date τ+∆τ: 

( ) τ
τττ

∆⋅−
∆+ ⋅= reFEf ˆ

 (2) 
In this equation F denotes the value of the option, r the continuously compounded risk free 
interest rate and Ê  the risk neutral expectation operator. The use of the risk neutral expecta-
tion operator and the risk-free interest rate follows the risk-neutral-valuation principle (see 
Cox and Ross, 1976). The fact that we take into account both the intrinsic value and the con-
tinuation value expresses the fact that the decision is regarded as a choice between two alter-
natives: (1) immediate investment and (2) delaying the investment decision. As a normative 
rule the investment option should be exercised if the intrinsic value equals or exceeds the con-
tinuation value. Therefore the value of the option is calculated as follows: 

( )τττ fiF ,max=  (3) 
The binary decision problem between exercising and waiting can be understood as a spe-

cific stopping problem. Equation (3) is equivalent to the Bellman-equation (see Dixit and 
Pindyck, 1994, p. 109). It can be shown that under certain regularity conditions7 there is an 
optimal exercise path which separates the stopping region from the continuation region. This 
exercise path or frontier consists of boundary values for the underlying *

τV  which indicate the 
values in time where a decision-maker is indifferent with regard to early-exercise or continua-
tion. In this case, the intrinsic value ( ) **

τττ iVi =  must equal the continuation 
value ( ) **

τττ fVf =  (identity- or value-matching condition): 
**

ττ fi =  (4) 
In Figure 1 (left) the graphs of the intrinsic value and the continuation value as functions of 

the expected present value of the investment cash flows are given for one potential exercise 
date τ (non dividend-protected American type call option on a dividend paying underlying8). 
Graphically speaking, the option should not be exercised if Vτ is situated to the left of the in-
tersection of the graphs of the intrinsic value and continuation value. It should be exercised 
immediately if Vτ is situated to the right. In other words: A profit maximizing decision-maker 
should exercise an investment option immediately if *

ττ VV ≥ . Note that for the sake of more 
convenient formulation we define in Figure 1 and for the rest of this paper ∆τ = 1. 

                   
7  The regularity-conditions demand that (1) the intrinsic value and the continuation value are monotone functions of the value 

of the underlying and that (2) the distribution function of the underlying in τ+∆τ will shift to the right (left) side, if the value in τ 
increases (decreases), i.e. a positive persistence of the stochastic process (see Dixit and Pindyck, 1994, p. 129). 

8  Note that the early-exercise of an American type call option without dividends of the underlying is never optimal. Therefore 
the option value corresponds to the value of an equivalent European style call option (see Merton, 1973). 
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Figure 1: Relationship between intrinsic value and continuation value (on the left) and  
exercise frontier (on the right) a 

 
a Depicted for a non-dividend-protected American call option with six potential exercise dates on a dividend 

paying underlying; ∆τ = 1. 
 

While the left hand side of Figure 1 refers to one potential exercise date, the right hand side 
shows the entire critical early-exercise path over time for an American call option with six 
potential exercise dates. The critical early-exercise path defines the optimal exercising strat-
egy for all potential exercise dates. Referring to the graph, one should immediately invest 
above the critical early-exercise path. Below the critical early-exercise path one should wait 
and see how the expected present value of the investment cash flows develops in the future. 
One characteristic of the critical early-exercise path is its negative exponential slope which 
expresses the reduction of flexibility in time. The shorter the residual lifetime of the option, 
the more ready an investor will be to carry out an investment. At the last possible exercise 
date Γ there is no more temporal flexibility to further delay the investment. Then the classical 
investment theory is valid and IV =Γ

* . 

Since the option price is the value of an option to a person who uses the optimal early-
exercise strategy, the determination of both the option price and the early-exercise strategy are 
closely associated. Numerous procedures are available for the computation of option values. 
They all have restrictions and can be divided in two main classes: (1) Analytical solutions of 
the stopping problem which require solving a partial differential equation9. Such closed form 
solutions are only available for simple valuation problems10. (2) Various numerical approxi-
mation methods for more complex valuation problems. Note that even a simple American 
option with a finite lifetime belongs to this second class. Because of the special character of 
real options, the most commonly used numerical methods for pricing financial options (finite 

                   
9  For a detailed representation see Dixit and Pindyck (1994, chapter 4). 
10  An extensive overview of option pricing formulas can be found in Haug (1998). 
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difference- and lattice methods) are not applicable. Only simulation-based approaches provide 
enough flexibility for successful valuation of complex options and therefore real options.  

3 Simulation-Based Methods for Valuing American Type Options  

Using a single standard stochastic simulation procedure, only European style options can be 
priced. Nevertheless, stochastic simulation is important for American type options because it 
can be successfully embedded in a more sophisticated methodological framework to value 
such options. That ranges from its use in a simple Black-approximation (Black, 1975) to its 
use in the simulation-based options pricing methods outlined in subsection  3.2. The difference 
between the various methods arises from their diverse ways of determining the critical early-
exercise path, before actually valuing the option. It is a common feature of all the methods 
that they simulate the stochastic development of one or several state variables. 

3.1 The Starting Point: The Classical Stochastic Simulation 

Boyle (1977) was the first to use stochastic simulation to value European type options. The 
basic idea is to simulate the value of the underlying (price path) in accordance with a plausi-
ble stochastic process in a risk neutral world up to the expiry date T. Then the expected pre-
sent value of the option price is computed using the risk neutral discount factor. In order to be 
able to do this, one has to guarantee, that - in accordance with risk neutral valuation princi-
ples - the risk neutral drift rate is used for the simulation instead of the real growth rate11. At 
the expiry date T, for every simulated value of the underlying T

sV  (s is a simulation run out of 
a total of S) the payoff of the option T

si  can be calculated. For a call option we would write: 

),0max( IVi T
s

T
s −=  (5) 
The current option value 0Fs  for a given price path and therefore simulation run is the payoff 

T
si  discounted with the risk free interest rate r: 

Tr
T

ss eiF ⋅−⋅=0  (6) 
The risk neutral expected value for the option price 0F  can subsequently be computed as the 
average over all simulated 0Fs : 

S
FF

S

s

s 1

1
00 ⋅= ∑

=  
(7) 

The advantages and disadvantages of stochastic simulation in comparison to other 
valuation procedures can be summarized as follows: 

Advantages: 
1. Almost any stochastic process can be simulated in a realistic way. This is especially im-

portant in the case of stochastic processes which are non-Markov in nature (i.e. future 
values depend not only on the presently observed value, but also on previous values; e.g. 
Autoregressive Integrated Moving-Average (ARIMA)-processes). It is almost impossible 
to handle such processes within the framework of lattice- or finite difference methods. 

                   
11  The risk-neutral drift rate equals the risk free interest rate minus dividends of the underlying (see Luenberger, 1998, p. 357). 

In the context of real options the so called convenience yield can be interpreted as a dividend. The convenience yield repre-
sents monetary advantages the owner of an asset enjoys compared to the owner of the option.  
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2. It is relatively easy to consider several stochastic variables simultaneously. Stochastic 
simulation is considerably more efficient than other numerical procedures such as lattice 
approaches if two or more stochastic variables (or a great number of potential exercise 
dates) must be considered. With stochastic simulation the computational requirements in-
crease only linearly with the number of the variables whereas with other methods it in-
creases exponentially. 

3. The accuracy of option valuation can be estimated by computing confidence intervals for 
the option price. 

Disadvantages: 
1. A very high number S of simulation runs is necessary in order to guarantee a sufficiently 

precise option valuation. Consequently, for simple valuation problems the computational 
speed is lower than that of lattice- or finite difference methods. For example, Haug (1998, 
p. 40) stipulates carrying out at least 10 000 simulation runs. Fortunately, with any given 
number of simulation runs, one can improve the stability of the solution by using so 
called variance reduction methods (e.g. antithetic variables technique) without a great in-
crease of computational time12. 

2. Using a single standard stochastic simulation procedure only European style options can 
be priced. The problem in the case of American style options is that with a simple for-
ward moving simulation of the price path it is not clear at potential exercise dates whether 
waiting or exercising represents the optimal strategy. In other words: The critical early-
exercise path is not known in advance. 

Because of these disadvantages, for a long time stochastic simulation was not believed to be 
feasible for the valuation of American type options at all (see e.g. Hull, 1993, p. 363; Briys et 
al., 1998, p. 62). Accordingly, it was as well deemed unsuitable for the valuation of real op-
tions (see e.g. Trigeorgis, 1996). However, due to the great flexibility of simulation-based 
approaches, many attempts have been made to integrate stochastic simulation(s) in a more 
complex valuation framework in order to overcome the disadvantage of the simple forward 
moving simulation.  

Despite the fact that some of these valuation methods provide accurate results and are rela-
tively simple to use, the potential of stochastic simulation for the valuation of American type 
options, whether they be real options or complex financial options, is still not widely appreci-
ated (see e.g. Hull, 2000, p. 408). 

3.2 Overview of Simulation-Based Methods 

The different methods which use simulation procedures to determine the early-exercise path 
and the price of American type options may be grouped as follows:  

A: Simulation of one finite sample of price paths starting at time 0 and subsequent stratifica-
tion of the state space  

1. Tilley (1993) uses a so-called bundling algorithm whereby, once and for all, starting from 
time 0 a large number of price paths are simulated. At each potential early-exercise date 

                   
12  An overview of various variance reduction procedures can be found in Hull (2000, chapter 16.7). 
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the paths are ordered according to the stock price level at that date and divided into “bun-
dles” of the same size. Next, starting from the expiry date of the option the average of the 
continuation values of prices in a bundle is taken as the single continuation value for that 
bundle. This backwards-recursive procedure yields an early-exercise strategy for each 
simulated stock price path. The ordering of the prices enables the critical early-exercise 
value to be determined through the ”identity condition“; that is, the early-exercise value 
lies where the intrinsic value coincides with the continuation value. However, this is 
based on the assumption that the average described above is an accurate estimate of the 
continuation value of the prices in a bundle, and also that there is a small distance be-
tween the bundles. In other words: Hence we need an extremely high number of paths in 
each bundle and a high number of bundles as well. In fact, there is a transition zone be-
tween holding and exercising in which the early-exercise strategy is determined by a 
pragmatic rule. Finally the option price is obtained as the average of the discounted pay-
offs for the initially simulated stock price paths according to the early-exercise strategy. 

2. Barraquand and Martineau (1995) also reduce the dimensionality of the valuation prob-
lem by grouping simulated paths at any point in time into a limited number of ”bins”. 
They then determine transition frequencies between successive bins by another simula-
tion and finally solve backwards like in a multinomial tree.  

3. Raymar and Zwecher (1997) similarly design a grid of ”bucket” regions and simulate 
paths through that grid. Therefore, at any point in time, the realized outcome will be as-
signed to one bucket. They then determine (1) transition frequencies into/out-of each 
bucket at every date t to each bucket at the next point in time t+1 and (2) average realized 
values in each bucket. Eventually, they determine the average payoff in each bucket at 
the date of expiration and iterate as in a multinomial tree to compute the current value of 
the American option.  

All three methods are mimicking the standard binomial tree by stratifying the state space and 
putting the simulated paths into groups which are called ”bundles” by Tilley, ”bins” by Bar-
raquand/Martineau and ”buckets” by Raymar/Zwecher. Indeed, Garcia (2000, p. 3) also puts 
all three methods in one group: “The papers by [Tilley, Barraquand/Martineau, Ray-
mar/Zwecher …] incorporate different aspects of the usual backwards induction algorithm by 
stratifying the state space and finding the optimal exercise decision in each subset of the state 
variables.“ However, unlike Barraquand/Martineau or Raymar/Zwecher, Tilley does not cal-
culate transitions probabilities between successive bundles and solve as in a multinomial tree. 
Instead, he uses a path-wise determination of the exercise strategy.  

B: Simulation of one finite sample of price paths starting at time 0 and subsequent backward-
recursive estimation of a continuation value function 

4. In a discussion of the Tilley-paper, Carriere (1996) describes Tilley’s bundling algorithm 
as a “regression method, albeit crude“. In a publication (1996) of his own he develops the 
regression method. Like Tilley, he first simulates the stock price movement a large num-
ber of times. Subsequently however, assuming that the option has not been exercised be-
fore, he determines the value functions which describe at any given date the value of the 
option depending on the basis values in a backward recursive fashion. At the expiry date 
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this value function is just the intrinsic value. After having determined the value function 
at a certain exercise date, he approximates a continuation value function at the previous 
exercise date by carrying out a piecewise polynomial regression of the already deter-
mined values against the basis values at the previous exercise point. He then takes the 
value function as the maximum of the continuation value function obtained by this re-
gression and the intrinsic value function. Using the continuation value function its inter-
section with the intrinsic value function can be calculated in order to determine the criti-
cal early-exercise value. In sum, by different regression methods he arrives at a “compa-
rable performance to Dr. Tilley’s method“. It should be noted, that although the critical 
exercise value is calculated, it is not used for a downstream simulation to determine the 
option price. The option price is rather determined as the average of the discounted cash 
flows of all the price paths according to their respective early-exercise strategies. 

5. The method proposed by Longstaff and Schwartz (2001) also proceeds in backward-
recursive fashion to obtain at each discrete exercise date the continuation value function 
depending on the basis value. This is achieved through use of the simple Least Squares 
method. They subsequently determine for each basis value whether exercising or holding 
of the option leads to the higher value. This results in a certain exercise strategy for each 
price path . However, the critical exercise value is not explicitly calculated and again, no 
downstream simulation to determine the option price takes place. The option price is 
rather found as the average of the discounted payoffs of all the paths simulated at the be-
ginning according to their respective early-exercise strategies. 

C: Multiple simulations and determination of the early-exercise strategy through maximiza-
tion of the option value with regard to parameters of an exercise function over time 

6. Bossaerts (1989) “develops simulation estimates of American option prices by parameter-
ise the stopping rule (i.e. exercise function over time) and then solving for the parameters 
that maximize the value of the option“. 

7. Fu and Hu (1995), Fu and Hill (1997) and Fu et al. (2000) likewise parameterise the ex-
ercise boundary, and then maximize the expected discounted payoff with respect to the 
parameters. “[...] no dynamic programming is involved, i.e., the procedure simultane-
ously optimises all parameters by iteration instead of sequentially by backward recursion. 
[...] It is “mimicking steepest-descent algorithms from the deterministic domain of non 
linear programming” (see Fu et al., 2000, p. 13). 

8. Garcia (2000) also tries to find a suitable parameterisation of the exercise boundary by 
using an optimisation algorithm to determine those values of the parameters which yield 
the maximum option value. 

D: Backward-recursive determination of critical exercise values using sequential simulation 
of price paths starting from the respective exercise dates 

9. Grant et al. (1997) suggest a backward-recursive procedure whereby at each possible 
early-exercise date the stochastic development of the basis value (state variable) is simu-
lated starting from different discrete test-values. For each test-value, the intrinsic values 
can be directly derived. Knowing the future exercise strategy, the respective stochastic 
continuation value is computed by using the expectation operator over all corresponding 
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sample paths. Generally speaking, the zeros of the ”identity function“ fid = i(Vτ) - f(Vτ) 
can be approximated by using a root finding algorithm such as the bisection or secant 
method, then bracketing the root of fid to a required tolerance and interpolating linearly to 
obtain an estimate for the root. Grant et al. predefine the bracket of the root by the set in-
terval between the different discrete test-values where simulations are started. 

10. Ibanez and Zapatero (1998) also suggest a backwards-recursive procedure whereby at 
each possible early-exercise time the stochastic development of the basis value and 
thereby the continuation value is simulated. However, the intersection of the easily calcu-
lated intrinsic value iτ and the simulated continuation value fτ (Value-Matching condition) 
is determined by several iterations of Newton’s method starting from an arbitrary basis 
value.  

Actually the approaches of Grant et al. (1997) and Ibanez and Zapatero (1998) are quite simi-
lar. There is one main difference. Grant et al. find two values of the asset at which the ”iden-
tity function“ has opposite signs and then use linear interpolation to approximate the boundary 
value (this is actually just one step of the secant method). Ibanez and Zapatero, in contrast, 
use several iterations of Newton's method to find the zero of the identity function. It would 
seem that a lot of work could be saved here by using the secant method as a root finding algo-
rithm rather than Newton's. The secant method converges almost as fast as Newton's method 
but with the advantage that one avoids the rather cumbersome evaluation of the derivative of 
the identity function.  

E: Multiple simulations and determination of the critical exercise path through maximization 
of the option value with regard to a heuristically varied set of exercise path values 

11. Dias (2001) or Balmann and Mußhoff (2002) maximize the option value with regard to a 
complete exercise path containing a set of critical values which is gradually optimised by 
means of genetic algorithms. First, S simulation runs, each starting from a different initial 
price in time 0, are carried out. Then, average option prices are computed for a number of 
test early-exercise paths (genomes) which had been randomly selected. These test exer-
cise paths are ordered by the level of the option value (fitness) they generate respectively. 
The application of the genetic algorithm (selection, recombination, mutation) determines 
the composition of the test exercise paths in the next test run (the next generation). This 
process, which generates increasingly fitter exercise paths by mimicking natural evolu-
tion, is repeated until all exercise paths of a generation are nearly identical. At this point, 
they also hardly differ from those of the previous generation and an improvement of the 
fitness is no longer possible (maximal option value). 

An overview of the basic characteristics of the different simulation-based methods to value 
American type options which are described above is given in table 1. 
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Table 1: Classification of different simulation-based methods 
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1 TILLEY (1993) 
 X X X   X     

2 BARRAQUAND and MARTI-
NEAU (1995) X X  X       

3 RAYMAR and ZWECHER 
(1997) X X  X       

4 CARRIERE (1996) 
 X  X  X X     

5 LONGSTAFF and SCHWARTZ 
(2001) X  X  X      

6 BOSSAERTS (1989) 
       X X X  

7 FU and HU (1995); FU and 
HILL (1997); FU et al. (2000)       X X X  

8 GARCIA (2000) 
       X X X  

9 GRANT et al. (1997) 
      X X X   

10 IBANEZ and ZAPATERO 
(1998)      X X X   

11 DIAS (2001); BALMANN and 
MUßHOFF (2002)       X X X a X a 

a Genetic Algorithms can be used to determine an optimal set of critical values or to optimise the parameters of 
an exercise function over time. 

 
Many – albeit not all – of these procedures are either not satisfying in regard to the preci-

sion of the option valuation or require so much programming effort and computational time 
that they hardly appear to be practical. This may or may not explain why they are, in general 
and without much differentiation, regarded by many experts as difficult to implement (see e.g. 
Hull, 2000, p. 408). Another obstacle for widespread applications seems to be that some of the 
procedures offer little intuition or require a lot of deep mathematics. Indeed, some procedures 
may be unnecessarily complicated compared to others for their intended application. At the 
same time, some of the more complex and cumbersome methods are justified because they 
permit the modelling of special complexities inherent in some options. Agent-based simula-
tions (genetic algorithms), for example, are sometimes necessary because they allow for the 
endogenous modelling of price dynamics within the framework of a real option pricing model 
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(see e.g. Balmann and Mußhoff, 2002). It should be noted, however, that a common feature of 
all real options is their complexity. A suitable valuation method has to be flexible enough to 
take account of all real world qualities of an option. They may for instance arise from non-
Markov processes, multiple stochastic variables, correlations of stochastic variables, interac-
tions of different options etc. The following discussion focuses on the potential of the valua-
tion procedure suggested by Grant et al. (1997). After some modifications it is well suited for 
the valuation of non-agent dependent, complex American type options with all the above 
mentioned features including multiple stochastic variables. Additionally, its performance can 
be improved by slight further modifications. The method combines high accuracy and good 
intuition with simple implementation (see section  5.2). According to our classification, it be-
longs to the group of methods which integrate sequential simulations of basis values for re-
spective exercise dates into a backward-recursive procedure which in turn determines the 
critical exercise path.  

4 Description of a Simple Recursive Stochastic Simulation Approach  

The literature usually refers to all procedures that determine the critical early-exercise frontier 
by a backward-moving recursion (backward induction) as “dynamic programming ap-
proaches“ (see e.g. Fu et al., 2000). This is due to the fact that the binary decision problem 
between exercising or waiting is regarded as a specific stopping problem (see Bellman, 1957). 
In this sense, lattice approaches also represent discrete approximations of the dynamic pro-
gramming principle. Accepting this terminology, those simulation-based procedures which 
determine the critical early-exercise frontier by a backward-moving recursion have to be sub-
sumed under “dynamic programming” as well. The approach of Grant et al. (1997) belongs to 
this group. It will be shown that it represents a straightforward and fast way to determine the 
critical early-exercise path and the option price of an investment option or an American style 
call option on a dividend paying underlying. Its advantages can be expanded by adopting 
some slight but effective modifications. This is already true if we consider a single stochastic 
variable. For the sake of clarity we choose this case for a detailed description of operational 
procedures in section  4.1. It is, however, equally valid if we consider multiple stochastic vari-
ables. The extensions which are necessary in this case are shown in section  4.2. In both cases, 
we could label this modified method as “Bounded Recursive Stochastic Simulation” (BRSS) 
due to the specific characteristics of the process used to determine the critical early-exercise 
values.  

4.1 Valuing a call Option with a Single Stochastic State Variable 

Before we describe the BRSS-procedure step by step for the case of a single stochastic vari-
able, we summarize the modifications which we have made to improve the effectiveness of 
the approach of Grant et al. (1997): 

1. In all simulations starting from different test-values with each one consisting of S paths, 
we use the same sequence of random numbers for the stochastic process. Technically 
speaking, we only have one Monte Carlo simulation and we save a lot of time by simul-
taneously simulating all price paths starting from different values. 
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2. We always use the (already known) critical exercise-value of the subsequent period as a 
lower bound for the test-values we start simulating from in order to determine the critical 
early-exercise value as a free boundary. We make an educated guess at an upper bound, 
obtaining thereby an interval which is divided into equal subintervals of a length which is 
already deemed sufficiently small for interpolation. Using the exercise strategy of the 
subsequent period as a lower bound turns out to be even more advantageous when deal-
ing with multiple stochastic variables and therefore more cumbersome exercise functions 
at any one point in time. The procedure of using a predefined sequence of test-values has 
an additional advantage because it facilitates the automation of consecutive work steps. 
We do not use a manual criterion (i.e. “stop, if intrinsic value exceeds the continuation 
value for the first time”) which would tell us when to stop simulating paths starting from 
still another test-value. Instead we predefine an interval where we expect the identity 
function to be zero and program the determination of the critical value (see Figure 4). 

Step 1: Determination of the critical exercise value *
ΓV  

The critical exercise value *
ΓV at the expiry date Γ of the option is the starting point of any 

backward-recursive valuation. Since there is no temporal flexibility at the last potential exer-
cise date, the investment should be carried out as soon as the investment payoff ΓV  covers the 
investment costs I. Therefore, *

ΓV  equals I. The knowledge of *
ΓV  is the precondition for cal-

culating *
1−ΓV . Let the length of the time period between two potential exercise dates be 

∆τ = 1. 

Step 2: Determination of the critical early-exercise value *
1−ΓV  

The critical early-exercise value *
1−ΓV  is the present value of the investment which yields an 

identical intrinsic value and continuation value. We calculate the intrinsic value ( )11 −Γ−Γ Vi  
and the continuation value ( )11 −Γ−Γ Vf  for a set of different test-values 1−ΓVn , with 
n = 1, 2, ..., N. For each test-value the intrinsic value can be directly derived. The correspond-
ing continuation value is estimated after running a stochastic simulation with S runs starting 
from the given test-value. We proceed as follows (see Figure 2): 

Step 2.1: Definition of test-values (test present value of the investment) 
The lowest test-value 11 −ΓV  we start simulating from is the theoretically known lower bound 
for date Γ-1 which is given by the critical exercise-value of the subsequent period, i.e. *

ΓV . 
Then we make an educated guess at a preliminary upper bound. The interval between the 
lower and upper bound (parameterization interval) is divided into N-1 equal subintervals 
whose length we deem sufficiently small for interpolation. The endpoints of these subintervals 
give us a total of N test-values 1−ΓVn  to start test-simulations from. The critical value *

1−ΓV  
falls between those two test-values the larger of which is the first test-value for which the in-
trinsic value is higher than the continuation value.  

Step 2.2: Determination of continuation values for each test-value by means of stochastic 
simulation 

S runs or paths starting from the lower bound 11 −ΓV  = *
ΓV  are simulated resulting in S values 

of the investment ΓVsn  at date Γ. Simultaneously, S paths are simulated starting from the other 
test-values 1−ΓVn . The simulations starting from different test-values are indeed one simulta-
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neous simulation because we use the same sequence of random numbers for all S runs. This 
reduces computation time significantly. Knowing *

ΓV  we calculate the continuation val-
ues 1−Γfs

n  for all paths starting from any given test-value 1−ΓVn  as the discounted payoff of 
the option: 

1
1 ),0max( ⋅−

Γ−Γ ⋅−= rs
n

s
n eIVf  (8) 
The expected value for the continuation value 1−Γfn  is the average value of all 1−Γfs

n : 

S
ff

S

s

s
nn

1

1
11 ⋅= ∑

=
−Γ−Γ

 
(9) 

Step 2.3: Calculation of intrinsic values for each test-value 
In order to compare the possible strategies “invest” and “wait”, we must also calculate the 
intrinsic value. The intrinsic value 1−Γin  for each test-value 1−ΓVn  can be directly derived as: 

),0max( 11 IVi nn −= −Γ−Γ  (10) 

Figure 2: Determination of a critical early-exercise value of a (dividend paying) Ameri-
can call option using BRSS a 

 
a Depicted for N = 7. 
 

Step 2.4: Approximation of the critical early-exercise value *
1−ΓV  by means of linear in-

terpolation 
It is very unlikely that the intrinsic value and continuation value will coincide at one of the 
pre-defined test-values. In most cases, the critical value will fall between two predefined test-
values, those which yield a change of sign of the difference of intrinsic value and continuation 
value. They will be denoted by n′  and n ′′ , where it does not matter which one is the smaller. 
The respective intrinsic values ( 1−Γ′ in  and 1−Γ′′ in ) and continuation values ( 1−Γ′ fn  and 1−Γ′′ fn ) 
are used for linear interpolation (equivalent to one step of the secant method): 

Intrinsic value 

Continuation 
value 

 7fΓ-1 
 

6fΓ-1 
 

n´´fΓ-1 = 5fΓ-1 
 

n´fΓ-1 = 4fΓ-1 
 

3fΓ-1 
 

2fΓ-1 
1fΓ-1 

nfΓ-1 niΓ-1 

7iΓ-1 
 
6iΓ-1 
 
5iΓ-1 = n´´iΓ-1 
 
4iΓ-1 = n´iΓ-1 
 
3iΓ-1 
 
2iΓ-1 
 
1iΓ-1 

Parameterization interval 

 1VΓ-1=VΓ
*  2VΓ-1   3VΓ-1     4VΓ-1    5VΓ-1    6VΓ-1     7VΓ-1 

                                                                         VΓΓΓΓ-1
* 
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 (11) 
*

1−Γi and *
1−Γf  denote the intrinsic value and the continuation value of the critical exercise-

value *
1−ΓV . Note that *

1
*

1 −Γ−Γ − fi = 0 (identity condition). 

In the example presented in Figure 2, one must interpolate between the values 
1 41 −Γ−Γ′ = VVn  and 1 51 −Γ−Γ′′ = VVn . 

Control step: Improving the interpolation  
In order to improve the approximation, we could reduce the length of the initial interval (see 
step 2.1). We would thereby also shorten the subintervals on which we have to interpolate by 
rerunning steps 2.2 to 2.4. Note that the initially chosen interval must be enlarged if it did not 
include a test-value yielding an intrinsic value higher than the continuation value.  

Step 3: Determination of the critical early-exercise value *
2−ΓV  

In order to determine the critical early-exercise value *
2−ΓV  one has to take into account the 

fact that the option may be exercised both at Γ-1 and at Γ. We can again use stochastic simu-
lation to determine continuation values for a given set of test-values 2−ΓVn , because we al-
ready know *

1−ΓV  and *
ΓV  and therefore the future exercise strategy. The procedure to deter-

mine *
2−ΓV  is analogous to the procedure described in step 2 above. Only the computation of 

the continuation value for each path has to modify according to the optimality of exercising 
either at Γ or Γ-1: 
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Step 4: Definition of the critical early-exercise values *
3−ΓV , *

4−ΓV , ..., *
0V  

The procedure described above is applied backwards until all critical early-exercise values are 
known. An increasing “length” of future exercise strategy increases the complexity of deter-
mining τf

s
n  according to the optimality of exercising at future dates. Equation (12) has there-

fore to be generalized as follows: 
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(13) 

Figure 3 gives a graphical representation of the basic procedure to determine the critical 
early-exercise path.  
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Figure 3: Basic procedure to determine the critical early-exercise path using BRSS 

 
 

Step 5: Determination of the option value 

0F  is the maximum of intrinsic value 0i  and continuation value 0f . After having determined 
the optimal strategy as a free boundary, one has to initiate one last simulation starting from 
the actual present value of investment cash flows V0. Then, the option value 0F  can be de-
termined as the expected value of all simulation runs S by determining 0i  and 0f  analogous 
to steps 2.2 and 2.3. Straightforward stochastic simulation can be applied because the optimal-
ity of exercising (i.e. the early-exercise path as a whole) is already known. 

Using the BRSS method, only Γ simulations and S⋅Γ  simulation runs are needed to de-
termine the early-exercise strategy because all paths starting from different test-values are 
simulated using the same random numbers. In order to value the option another simulation 
with S runs is necessary. 

4.2 Valuing an Option with Multiple Stochastic State Variables 

When pricing financial options we very often assume that the value of the underlying is the 
only stochastic state variable. However, some financial option pricing models consider addi-
tional stochastic variables, such as a stochastic variance and/or a stochastic risk free interest 
rate. With real options there are still more sources of uncertainty to be taken account of. This 
is, in part, due to the fact that real options do not represent contractual rights. A good example 
is the investment costs which are a stochastic variable, even though they are analogous to the 
(contractually fixed) strike price of financial options. Another necessity for integrating addi-
tional stochastic variables may arise from a disaggregation of the state variable. A disaggrega-
tion is necessary if we value compound options with one or several follow-up options such as 
options to switch use or to switch operating mode etc. The modelling of a choice between 
different outputs and/or inputs requires the use of revenues and variable costs (or even more 
disaggregated variables such as input or output prices) instead of the aggregated value of the 
underlying. Hence, we can summarize three reasons why we have to take account of multiple 
variables in real option pricing. 

*
ΓV = I 

 
... 

 
... 

111 ... −Γ−Γ VV N  
(predefinition) 

111 ... −Γ−Γ ff N  
(simulation) 

111 ... −Γ−Γ ii N  
(algorithm) 

no 
yes 

*
1−ΓV  

(interpolation) 
*

1−ΓV ? 

*
2−ΓV ? 

interval for  
identity condition 

found? 

*
0V ? 
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1. Several factors which can be considered as being stochastic in the case of financial op-
tions may also be stochastic in the case of real options (e.g. variance of the underlying) 

2. Several factors which are contractually fixed in the case of financial options may repre-
sent additional stochastic variables in the case of real options (e.g. strike price) 

3. Several factors which arise from a disaggregation of the state variable may replace this 
stochastic state variable in the case of real options  

Option pricing based on more than one stochastic variable has to take account of correla-
tions. Correlations between stochastic variables will alter the stochastic development of these 
variables and lead to a different option value. The modelling of correlations is straightforward 
in simulation-based option pricing procedures. Let τεX  and τεZ  be two non correlated ran-
dom numbers belonging to a standard normal distribution and YX ,ρ  the correlation between 
two random numbers τεX  and τεY . Consequently the correlated random number τεY  is to be 
generated as follows:  

τττ ερερε Z
YX

X
YX

Y ⋅−+⋅= 2
,, 1

 (14) 
Stochastic simulation procedures can generally handle multiple stochastic variables quite 

easily. Therefore, not many adjustments to option pricing procedures have to be made when 
determining the value of European options depending on multiple stochastic variables. It 
should be noted, however, that time discrete versions of stochastic processes cannot be used 
in the case of stochastic variances, risk free interest rate etc, because they imply a constant 
(i.e. non-stochastic) value of these parameters over time. That is why we have - even in the 
case of European options - to resort to a sufficiently fine discretisation of time when we simu-
late the price path of the underlying.  

Contrary to European options, the determination of the early-exercise strategy and the 
value of American options depending on multiple stochastic variables is quite complicated. 
With one stochastic variable, we had, at any one point in time, to determine one critical exer-
cise value forming, in turn, a one-dimensional early-exercise strategy over time (see Figure 1 
and Figure 5 A). Now we have, at any one point in time, to determine critical combinations of 
values for different stochastic variables (early-exercise function) forming in turn a multidi-
mensional early-exercise strategy over time. For the sake of clarity and feasibility of graphical 
representation we subsequently consider only a stochastic underlying and one additional sto-
chastic variable at a time, namely: stochastic investment costs (see Figure 5 B), an additional 
interference from the past emanating from an IMA(1,1)-process (C), stochastic risk free inter-
est rates (D), stochastic risk neutral drift rates (E) and stochastic variances (F). 
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Figure 4: Diagrammatic representation of the critical early-exercise function at any 
point in time depending on two stochastic variables 

 
 

In the case of stochastic investment costs, the problem of multiple stochastic variables can 
be reduced to determining one critical value *

τm  defining the constant positive gradient of the 
linear early-exercise function (see Figure 4 B). 

τττ ImV ⋅= **
 (15) 

In contrast, an additional stochastic interference term from the past τχ  emanating from an 
IMA(1,1)-process as well as stochastic risk free interest rates generate early-exercise func-
tions with negative and exponentially decreasing gradients (see Figure 4 C and D).  

Stochastic risk neutral drift rates and stochastic variances, in turn, generate early-exercise 
functions with positive and exponentially increasing gradients (see Figure 4 E and F). 

*
τV  

A: Critical early-exercise value B: Critical early-exercise function depending on 
stochastic investment costs 

D: Critical early-exercise function depending on 
stochastic risk free interest rates (rste = δ) 

*
τV  

Iτ 

C: Critical early-exercise function depending on 
stochastic interferences from the past in an 
IMA(1,1) Prozess 

rτ χτ 

*
τV  

στ 

*
τV  

I 

τα̂  

E: Critical early-exercise function depending on 
stochastic risk neutral drift rates (δ = const. >0) 

F: Critical early-exercise function depending on 
stochastic variances 

*
τV  *

τV  
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We were already able to show in the previous part of this paper, that the powerful stochas-
tic simulation procedures can be used for pricing American options by embedding them in a 
broader backward-recursive framework to value such options. Now, dealing with the problem 
of multiple stochastic variables and therefore early-exercise functions instead of early-
exercise values, we are again able to integrate operational procedures solving this problem 
into the broader methodological framework of simulation-based option pricing. The following 
steps specify which additional operational procedures are needed within a framework of op-
tion pricing which is based on a backward recursive sequential stochastic simulation of price 
paths.  

• Taking account of all correlations we simulate S paths of each stochastic variable and 
store them separately in columns, before we actually value the option. 

• At expiration, the critical exercise function is reduced to the well known critical exercise 
value I. 

• In the last early-exercise date we use the free boundary approach. Instead of determining 
one critical value, however, we determine a discrete critical value of the underlying for a 
given value of the second stochastic variable using the value matching condition. By a 
subsequent systematic variation of the second variable, we find critical values of the un-
derlying depending on the second stochastic variable (critical combinations). 

• In most cases subsequently simulated price paths will not coincide exactly with these se-
lected (discrete values). We will therefore either have to use linear interpolation or we 
have to estimate, at any one point in time, an explicit critical early-exercise function in 
order to determine the exercise strategy. 

• By proceeding recursively backwards, all the other critical combinations (respectively 
early-exercise functions) are determined because at any one exercise point the future 
strategy is known. In order to save time, we always use the (already known) critical com-
bination of values of the subsequent period as a lower bound for the test-values we start 
simulating from. 

• ... 

• After the determination of this multidimensional early-exercise strategy the value of the 
option can again be calculated by one simple Monte Carlo simulation starting from the 
presently observed value. 

5 Validation 

In this section, five different methods to determine the critical early-exercise paths and the 
option value are compared and validated: (1) the initial approach by Grant et al. (1997), 
(2) the BRSS-method derived above, (3) the binomial tree method, (4) the approach by Ibanez 
and Zapatero (1998) and (5) genetic algorithms. For this purpose, we use a simple investment 
option which allows for the binomial solution as an additional benchmark.  



VALIDATION    22 

 

5.1 Model Assumptions 

A present value of investment cash flows V0 of 110 T€ is expected 13. The investment costs I 
are 100 T€. They are completely sunk once the investment is carried out. Investment opportu-
nities are given at dates τ, τ = 0, 1, ..., Γ with Γ = 5. The lifetime of the option is T = 5 years. 
The length of a time period between two potential exercise dates is ∆τ = T/ Γ = 1 year. There-
fore, there are Γ+1 = 6 potential exercise opportunities. The standard deviation of the stochas-
tic process for the expected present value of the investment cash flows σ is 20% p.a. Addi-
tionally, there is a continuous convenience yield (dividend payment) δ of 5.83%. The con-
tinuous risk free interest rate r is also 5.83 %14. It is assumed that σ, r and δ are constant. Any 
uncertainty concerning these parameters, however, could be easily implemented within the 
framework of simulation-based procedures. The state variable V follows GBM (see Hull, 
2000, p. 407):  

( ) dzVdtVrdV ⋅⋅+⋅⋅−= σδ  (16) 
dz describes a Wiener process. We use the discrete-time version of a GBM for the simulation: 
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ε  is a standard normally distributed random number. With ∆τ = 1, we write: 
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We are to answer the following questions: (1) What is the value of the investment option? 
and (2) What expected present value of investment cash flows would trigger an immediate 
investment? 

5.2 Results and Validation 

The results for both the early-exercise path and the value of the option are shown in Table 2. 
According to the BRSS-method, the investment option should be immediately exercised if the 
expected present value of investment cash flows exceeds 145.47 T€. Looking at the critical 
values at subsequent dates one sees very easily that the critical exercise path decreases expo-
nentially with the reduction of the lifetime of the option. That was to be expected from theo-
retical insight (see right illustration in Figure 1). The value of the investment option according 
to the BRSS-method is 19.91 T€. 

                   
13  Disaggregated values (e.g. revenues and variable costs of the production) can be considered in principle. This would only 

demand minor modifications to the simulation model, binomial or even analytical solutions, however, would not be feasible.  
14  This is equivalent to a discrete interest payment of 6 % p.a. 
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Table 2: Comparison of different valuation procedures 
τ Bounded recursive 

stochastic simula-
tion (BRSS) 

Approach by Grant 
et al. 

Binomial tree 
method a 

Approach by 
Ibanez and Zapa-

tero 

Genetic algorithm b 

Critical early-exercise value *
τV  

0 145.47 145.43 145.27 145.39 144.57 
1 142.43 141.53 142.50 142.66 140.69 
2 138.55 137.78 138.96 138.55 134.24 
3 132.53 133.73 133.56 133.42 128.59 
4 124.34 124.48 125.11 124.94 121.94 
5 100.00 100.00 100.00 100.00 100.00 

American style option value 
0F  

 19.91 19.88 19.86 19.77 19.67 
Confidence interval for the ”true“ option value 

0
~F  (with 5% error probability) 

 19.70 <
0

~F < 20.12 19.67 <
0

~F < 20.09 - 19.56 <
0

~F < 19.97 19.47 <
0

~F < 19.88 

Time required for programming the model 
 small small small high very high 

Time required for computation of *
τV  and 

0F  c 
 approx. 30 min approx. 2 h approx. 5 min approx. 8 h approx. 12 – 24 h d 

a The discretisation of the development of the state variable (value of investment cash flows) is 0.05 years. 
b 100 generations with in each case 50 000 simulation runs. 
c Computing time with direct programming in MS-EXCEL. For the simulation-based methods, 

50 000 simulation runs are carried out; 1 400 MHz-processor. 
d Highly dependent on random numbers. 
 

The results of alternative numerical methods are also given in Table 2. The approach of 
Grant et al. (1997), the binomial tree method (as a non-simulation-based procedure), the ap-
proach of Ibanez and Zapatero (1998) and the genetic algorithms employed by Diaz (2001) 
and Balmann and Mußhoff (2002) are used for the valuation of the example real option. It is 
apparent that all procedures yield almost identical values for the critical early-exercise path. 
Only the value found by the genetic algorithms approach deviates a little bit from the others. 
But the option prices F0 found by the different methods, including the one found by genetic 
algorithms, are virtually the same. Apparently the option price is not very sensitive to small 
deviations of the assumed early-exercise path. As a result of the validation one can state, that 
the BRSS yields highly accurate results. 

The performance of the different numerical methods from the practical point of view (i.e. 
the amount of work involved) is also summarized in Table 2. For this simple problem, the 
binomial tree would clearly be the least cumbersome, both with regard to programming effort 
and computational time. It must be emphasised, however, that lattice methods in general do 
not show enough flexibility to integrate complex stochastic processes, multiple stochastic 
variables etc. in option pricing. On the other hand, genetic algorithms feature the highest pro-
gramming and computation requirements and represent the most flexible option pricing 
method. They even allow for agent-based simulations and therefore facilitate, in contrast to all 
other methods, the direct integration of competition into an option pricing model. This can be 
important for the pricing of real assets, since real options are often only exclusive “to a certain 
degree”. Consequently, real option pricing must often be set in a framework of game theory 
where we have to consider different “players” and where we must look for an equilibrium-
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strategy (Nash-equilibrium). However, since genetic algorithms require multiple program-
ming effort and computational time compared to other simulation approaches, they should be 
used only if they are really essential. In all other cases, where we do not have to deal with 
competition, but only with complex (American type) options, the BRSS-method is to be pre-
ferred. It provides the fastest solution of all simulation-based procedures used in the test bed 
and requires the smallest programming effort.  

6 Summary and Conclusion 

Quite contrary to a belief still prevailing even in the “professional world” (see e.g. Hull, 2000, 
p. 408; Trigeorgis, 1996) American type options can be quite easily priced by methods using 
Monte Carlo simulation. In the last decade, a great number of simulation-based procedures 
have been proposed. They are flexible enough to value even complex options and therefore, in 
particular, real options which are often characterised by complex stochastic processes, multi-
ple stochastic factors, correlation between different options etc. In other words: Pricing of 
complex financial options as well as realistic applications of the new investment theory and 
therefore the valuation of entrepreneurial flexibilities are made feasible through the integra-
tion of stochastic simulations in option pricing methods. Some of the procedures proposed so 
far suffer from an unsatisfactory flexibility or accuracy and/or a high programming and com-
putational demand. Others, in contrast, are particularly appealing because of their accurate-
ness, simplicity, flexibility and intuition. This is particularly true for the modification of the 
approach of Grant et al. (1997) we propose in this paper and call “Bounded Recursive Sto-
chastic Simulation” (BRSS). Although this modification appears to be rather marginal, it al-
lows for a significant reduction of computational time, without loss of applicability. 

Corresponding to Grant et al. (1997), the BRSS integrates a sequential stochastic simula-
tion of price paths in a backward recursive programming approach to determine the critical 
early-exercise path. It then values the option by initiating a simple Monte-Carlo simulation 
from the valuation date of the option. The determination of the critical early-exercise values is 
straightforward: Starting from the end and moving backward, for every exercise date, the 
critical value is determined by systematically simulating sample paths for the underlying 
emanating from different test-values at the respective date. The critical value falls between 
those test-values which yield a change of sign of the difference of intrinsic value and con-
tinuation value. It can be estimated by linear interpolation. 

The BRSS is to be preferred to other simulation-based valuation procedures, which offer 
the same flexibility, due to its simplicity, intuition and ease of implementation. Furthermore, 
comparing its results to those of the binomial tree method shows that it yields highly accurate 
results. However, in real options problems, there may be the need for even more flexible 
valuation methods. This is for instance the case when we want to model competition and 
therefore price dynamics endogenously instead of using a given stochastic price process as an 
input for the option pricing model. Consequently, option pricing will have to take account of 
decisions of agents or “players” and will be set in a framework of game theory where we have 
to look for an equilibrium-strategy (Nash-equilibrium). This can be implemented by integrat-
ing genetic algorithms into simulation procedures (agent-based simulation procedures). Yet, it 



REFERENCES    25 

 

should be stated, that these methods are more complex and require much more computational 
time. Whenever possible, one should therefore use simpler procedures.  
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