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Abstract:  

This article examines problems that may occur when conventional Value-at-Risk (VaR) 

estimators are used to quantify market risks in an agricultural context. For example, standard 

VaR methods, such as variance-covariance method or historical simulation, can fail when the 

return distribution is fat tailed. This problem is aggravated when long-term VaR forecasts are 

desired. Extreme Value Theory (EVT) is proposed to overcome these problems. The application 

of EVT is illustrated by an example from the German hog market. It turns out that multi-period 

VaR forecasts derived by EVT deviate considerably from standard forecasts. We conclude that 

EVT is an useful complement to traditional VaR methods. 
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1 Introduction 

Market risk is a dominant source of income fluctuations in agriculture all over the world. This 

calls for indicators showing the risk exposure of farms and the effect of risk reducing measures. 

A concept discussed in this context is Value-at-Risk (VaR). VaR has been established as a 

standard tool among financial institutions to depict the downside risk of a market portfolio. It 

measures the maximum loss of the portfolio value that will occur over some period at some 

specific confidence level due to risky market factors (Jorion, 1997). Though VaR has been 

primarily designed for the needs in financial institutions, Boehlje and Lins (1998) and Gloy and 

Baker (2001) allude to its potential for applications in agribusiness. As well, Manfredo and 

Leuthold (2001) calculate VaR measures in order to quantify the market risk of cattle feeders. 

However, some well known problems have to be overcome when utilizing VaR. First, the time 

horizon in agricultural applications will in general be longer than in financial applications. Thus, 

the question arises how to extrapolate a short-term (e.g. week-to-week) volatility forecast. The 

usual way to achieve this is to use the square-root-rule. Unfortunately this method presumes 
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independently, identically distributed (iid) returns and little is known about its properties if 

returns are not independent (for instance if they follow a GARCH process or a mean reverting 

process). Secondly, common VaR models have difficulties in estimating the left tail of the return 

distribution in particular if long time series of historical prices are not available. However, the 

prediction of extreme events may be of particular interest to decision makers. For example, the 

recent crisis of the livestock sector in the European Union, due to BSE and foot-and-mouth 

disease, increased the awareness of market participants towards rare market situations. In order 

to improve the estimation of such extreme events Diebold, Schuerman, and Stroughair (1998) 

suggest the use of Extreme Value Theory (EVT). EVT can be considered as a state-of-the-art 

procedure for estimating the downside risk of a distribution. However, to the knowledge of the 

authors it has not been applied in the agribusiness yet. 

The objective of this paper is threefold. First, we intend to pinpoint the aforementioned pitfalls of 

traditional VaR models. Second, we want to explore the applicability of EVT for practical 

agricultural problems. The German hog market serves as an illustrative example for this. Finally, 

a comparison of the performance between EVT and standard VaR techniques shall support the 

decision whether more or less sophisticated methods are appropriate in order to assess market 

risks in agriculture. 

The paper is organized as follows: Section 2 briefly describes the VaR concept and some related 

problems. Section 3 introduces EVT and shows how this concept can be used to estimate the tails 

of return distributions. In Section 4 we apply EVT to the German hog market and derive 12-

week VaR forecasts for the returns in feeder pig production and hog finishing. The results are 

compared with the outcome of standard procedures, namely historical simulation and the 

variance-covariance method. The paper ends with a discussion of the strengths and weaknesses 

of VaR and EVT. 

2 Value-at-Risk 

2.1 Definition 

Briefly stated, VaR measures the maximum expected loss over a given time period at a given 

confidence level that may arise from uncertain market factors. Call W the value of an asset or a 
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portfolio of assets and 
01 tt WWV −= the random change (revenue) of this value during the period 

01 ttth −== ∆ , then VaR is defined as follows: 

*V)V(E −=VaR . (1) 

E(V) is the expectation of V and the critical revenue *V  is defined by: 

( ) p*Vvdv)v(f
*V

=≤=∫
∞−

Prob . (2) 

Using the identity XWV t ⋅=
0

 with )ln(
01 tt WWX =  VaR can also be expressed in terms of the 

critical return X*: 

*)X)X(E(Wt −=
0

VaR  (3) 

where E(X) and X* are defined analogous to E(V) and V*.  

Figure 1 illustrates the concept graphically. From equation (2) and figure 1, it is obvious that the 

calculation of VaR boils down to finding the p-quantile of the random variable V (i.e. the profit-

and-loss distribution). An advantage of VaR is that it can be intuitively understood. Standard risk 

criteria like stochastic dominance or certainty equivalents rely on the entire distribution. 

Opposed to that VaR considers just the left tail of the distribution. That means risk is viewed as 

bad outcome. Moreover VaR is easy to calculate and it is not difficult to include multiple 

uncertain market factors (e.g. commodity prices, futures prices or interest rates) into the analysis. 

However, the implication of this indicator for risk management is not straightforward. The 

choice of the confidence level is somewhat arbitrary and in general, consistency with the 

expected utility theory is not guaranteed. The reason is that VaR only quantifies the probability 

that a loss exceeds a certain level, but the magnitude of such a loss is not specified (Harlow, 

1991). Despite this deficiency, our basic premise in this paper is that VaR contains useful 

information about the (downside) risk exposure of an enterprise and we focus on the question 

how to determine this risk indicator. Alternative methods to calculate VaR are briefly 

summarized in the next section. 
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Figure 1: Definition of VaR 
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2.2 Methods of VaR Calculation 

The literature offers three standard procedures for VaR estimation, namely the variance-

covariance method (VCM), Monte Carlo simulation (MS) and historical simulation (HS), all 

showing specific advantages and disadvantages. A detailed treatment of these methods can be 

found in (Jorion, 1997) and (Dowd, 1998). Manfredo and Leuthold (1999) discuss the pros and 

cons of these estimation procedures. This paper provides a brief overview and pinpoints some 

deficiencies that we try to overcome later. 

Variance-Covariance Method 

The VCM (also called parametric approach or delta-normal method) determines VaR directly as 

a function of the volatility of the portfolio return σ. If normality of the returns is assumed, VaR 

can be determined as: 

hcWt ⋅⋅⋅= σ
0

VaR . (4) 
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Herein c denotes the p-quantile of the standard normal distribution. h is a scaling factor that 

adapts the time horizon of the volatility to the length of the holding period h. The problems that 

may arise when using such a scaling factor are discussed in section 2.4. In the case of a portfolio 

that consists of n assets, the volatility of the portfolio return is calculated according to: 

5.0

1 1








∑ ∑ ⋅⋅=
= =

n

i

n

j
ijjip ww σσ  (5) 

where wi and wj are the weights of assets i and j and ijσ  is the covariance of their returns.  

An apparent advantage of the VCM is its ease of computation. If the normality assumption holds, 

VaR figures can be simply translated across different holding periods and confidence levels. 

Moreover, time-varying volatility measures can be incorporated and what-if-analyses are easy to 

conduct. On the other hand, the normality assumption is frequently criticized. There is empirical 

evidence that return distributions are fat tailed, and in that case the VCM will underestimate the 

VaR for high confidence levels. Further problems occur if the portfolio return depends in a 

nonlinear way on the underlying risk factors, which is typically the case when options are 

included in the portfolio.  

Monte Carlo Simulation 

With this method the entire distribution of the value change of the portfolio is generated, and 

VaR is measured as an appropriate quantile from this relative frequency distribution. The 

simulation involves the following steps: 

Selection of distributions for the changes of the relevant market factors (e.g. commodity prices) 

and estimation of the appropriate parameters, in particular variances and correlations, 

simulation of random paths for the market factors, 

evaluation of the portfolio for the desired forecast horizon ("mark-to-market"), 

calculation of the gains or losses related to the current portfolio value, 

repetition of the three aforementioned steps until a sufficient accuracy is gained, and, 

ordering of the value changes in ascending order and determination of the frequency distribution. 
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The main advantage of the Monte Carlo simulation is the ability to handle different return 

distributions. Harmful are the high costs of computation in the case of complex portfolios. 

Historical Simulation 

Historical simulation (HS) resembles the Monte Carlo simulation regarding the iteration steps. 

The difference is that the value changes of the portfolio are not simulated by means of a random 

number generator, but directly calculated from observed historical data. That means, VaR 

estimates are derived from the empirical profit-and-loss distribution. Hence, no explicit 

assumption about the return distribution is required. However, this procedure implicitly assumes 

a constant (stable) distribution of the market factors. A general problem arises from the fact that 

the empirical distribution function, while being relatively smooth around the mean, shows 

discrete jumps in the tails due to the small number of extreme sample values. The higher the 

desired confidence level, the more uncertain the estimation of the corresponding quantile 

becomes. Accordingly, VaR estimates based on HS are sensitive to changes in the data sample. 

In addition, it is not possible to predict events that are worse than the maximal loss during the 

sample period. The extreme value theory, described in section 3, offers an opportunity to avoid 

these problems. 

2.3 Modeling the Return Distribution 

If a parametric approach to VaR estimation is utilized, the question arises which distribution 

function fits best to the observed changes of the market factors. As mentioned above, it is widely 

recognized in the literature that empirical return distributions of financial assets are characterized 

by fat tails. Wei and Leuthold (1998) provide some evidence that agricultural price series may 

also exhibit fat tails. With respect to modeling the underlying stochastic process, two 

consequences can be deduced (Jorion, 1997, p. 166 f.): either one uses a leptokurtic distribution, 

e.g. a t-distribution, or one resorts to a model with stochastic volatility. Of course both 

approaches can be combined. The observation of volatility clusters in high frequency (i.e. daily) 

data favors the use of models with stochastic volatilities. The changing of phases of relatively 

small and relatively high fluctuations of returns can be captured with GARCH models. Yang and 

Brorsen (1992) demonstrate that GARCH models are not only relevant for financial applications, 

but also appropriate to describe the development of daily spot market prices of agricultural 

commodities. Herein a stochastic process of the form 
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ttttX εσµ +=  (6) 

is assumed for the returns, where εt are iid random variables. In most applications normal or t-

distributions for the disturbance variable εt are presumed. In a GARCH(1,1) process, the variance 

2
tσ  develops according to 

2
t

2
t

22
1t X βσδωσ ++=+  (7) 

with 10002 <+≥≥>= βδβδσγω ,,,  

2σ  is a long-term average value of the variance, from which the current variance can deviate in 

accordance with (7). Obviously the use of models with stochastic volatility implies a permanent 

updating of the variances and thus the VaR forecasts. 

While conditional models are superior for short-term forecasts, their value vanishes with 

increasing time horizon. Christoffersen and Diebold (2000) argue that the recent history of data 

series has little to tell about the probability of events occurring far in the future. This applies 

especially to the prediction of rare events like disasters, which are assumed to be stochastically 

independent. Therefore Danielsson and de Vries (2000) recommend to derive predictions about 

extreme events from unconditional distributions. 

2.4 Long-term Value-at-Risk 

Much of this paper is motivated by the supposition that the relevant VaR horizon in agricultural 

applications in general will be longer than in a financial context, where one-day or few-day 

forecasts dominate. In general the desired forecast horizon and the observation frequency of the 

data will deviate. One may think of a farmer who wishes to determine the VaR for a six-months-

period according to his production cycle having weekly price data at hand. Basically two 

methods exist to calculate long-term VaRs: either one measures the value changes that occur 

during the entire holding period, that means, the VaR is estimated on the basis of six month's 

returns. Alternatively, a short-term VaR can be extrapolated to the desired holding period (time 

scaling). The first procedure is applicable independent of the return distribution. However, it has 

the serious drawback that the number of observations is strongly reduced. If, for instance, weekly 

data are available over a period of 10 years, a six-month VaR is based on 20 observations only, 

since the measurement periods should be non-overlapping. The second method avoids this 

problem. In practice the time-scaling is conducted by means of the square-root-rule 



8 

( ) ( ) hh ⋅= 1VaRVaR . (8) 

VaR(1) and VaR(h) denote the one-period VaR and the h-period VaR, respectively. Diebold et 

al. (1997) point out that the correctness of the square-root-rule relies on three conditions. First, 

the structure of the considered portfolio may not change in the course of time. Secondly, the 

returns must be identically and independently distributed, and thirdly, they must be normally 

distributed. Section 3.1 discusses the consequences of non-normality for time aggregation. At 

this point, we ask what would happen if the iid assumption is not fulfilled. Though a general 

answer to this question is not available, Drost and Nijman (1993) provide a formula for the 

correct time aggregation of a GARCH process. For the GARCH(1,1) process described above, 

the h-period volatilities can be determined from the one-period volatilities as follows1: 

)h()h()h(X)h()h()h( ttt
2222

1 σβδωσ ++=+  (9) 
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The coefficients a und b are defined as: 
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where κ denotes the kurtosis of the return distribution. 

Comparing (9) with (8) reveals systematic differences, which become larger with increasing h. If 

h goes to infinity, δ and β in (9) converge to zero and hence the stochastic terms vanish, whereas 

the first deterministic term increases. That means that the average levels of the h-period volatility 

coincide in both cases, but the square-root-rule magnifies the fluctuations of the volatility, while 
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they actually become smaller with increasing time horizon. Diebold et al. (1997) illustrate the 

magnitude of the difference of both methods of volatility forecasting by means of simulation 

experiments. Similar calculations in the context of our application are presented in section 4. 

3 Extreme Value Theory 

From the discussion in section 2.2, some pitfalls of traditional methods of VaR estimation 

became obvious, in particular if the prediction of very rare events is desired and leptokurtic 

distributions are involved. Now we turn to the Extreme Value Theory (EVT) in order to improve 

the estimation of extreme quantiles2. EVT provides statistical tools to estimate the tails of 

probability distributions. Some basic concepts are briefly addressed below. A much more 

comprehensive treatment can be found in Embrechts, Klüppelberg, and Mikosch (1997). 

3.1 Basic concepts 

A main objective of the EVT is to make inferences about sample extrema (maxima or minima)3. 

In this context the so called Generalized Extreme Value distribution (GEV) plays a central role. 

Using the Fisher Tipplet theorem, it can be shown that for a broad class of distributions the 

normalized sample maxima (i.e. the highest values in a sequence of iid random variables) 

converge towards the Generalized Extreme Value distribution with increasing sample size. If  X1,  

X2, …, Xn  are iid random variables from an unknown distribution F, and let an und bn be 

appropriate normalization coefficients, then for the sample maxima )X,,X,Xmax(M n21n L=  

holds: 

( )xHx
a

bM
limp

n

nn =







≤

−
 (10) 

where plim means the limit of a probability for ∞→n  and H(x) denotes the GEV, which is 

defined as follows: 

                                                                                                                                                                                                    
1 Kroner, Kneafsey, and Claessens (1995) provide an alternative, recursive formula for the time aggregation of a GARCH(1,1) 

process, which is somewhat simpler than the Drost-Nijman-formula. However, we prefer the latter, since it allows to 
incorporate the kurtosis of the distribution of the random shocks. 

2  We emphasize that EVT is not the only method to cope with extreme events and fat tailedness. For example, LI (1999) uses a 
semiparametric approach to VaR estimation, which takes into account skewness and kurtosis of the return distribution in 
addition to the variance. Moreover, stress testing is a rather widespread technique that may be used as a complement to 
traditional VaR methods. It gauges the vulnerability of a portfolio under extreme hypothetical scenarios. 

3  Embrechts, Klüppelberg, and Mikosch (1997, p. 364) express the objective of EVT vividly as “mission improbable: how to 
predict the unpredictable“. 
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 (11) 

The GEV includes three extreme value distributions as special cases, the Frechet distribution 

)0( >ξ , the Weibull distribution )0( <ξ , and the Gumbel distribution )0( =ξ . Depending on 

the parameter ξ , a distribution F is classified as fat tailed )0( >ξ , thin tailed )0( =ξ , and short 

tailed )0( <ξ . In the present context the focus is on the first class of distributions, which 

includes for example the t-distribution and the Pareto distribution, but not the normal 

distribution. Embrechts, Klüppelberg, and Mikosch (1997, p. 131) prove that the sample maxima 

of a distribution exhibiting fat tails converges towards the Frechet distribution ( ) ( )αΦ xexpx = , if 

the following condition is satisfied: 

( )xLx)x(F1 1 ξ−=− . (12) 

Equation (12) requires that the tails of the distribution F behave like a power function. L(x) is a 

slowly varying function and ξα 1=  is the tail index of the distribution. The smaller α is, the 

thicker are the tails. Moreover, (12) indicates that inferences about extreme quantiles of a 

possibly unknown distribution of F can be made as soon as the tail index α and the function L 

have been determined. Section 3.2 describes an estimation procedure for α. 

The results of the EVT are also relevant for the aforementioned task of converting short-term 

VaRs into long-term VaRs. Assume ( ) α−=> CxxXP  applies to a single-period return X for 

large x. Then we have for a h-period return (Danielsson and de Vries, 2000): 

( ) α−=>+++ hCxxXXXP h21 L . (13) 

(13) holds due to the linear additivity of the tail risks of fat tailed distributions. It follows that a 

multi-period VaR forecast of a fat tailed return distribution under the iid assumption is given by: 

( ) ( ) α11VaRVaR hh = . (14) 

If the returns have finite variances then 2>α  and thus a smaller scaling factor applies than 

postulated by the square-root-rule (Danielsson, Hartmann, and de Vries, 1998). Obviously the 

square-root-rule is not only questionable if the iid assumption is violated, but also if the return 

distribution is leptokurtic. 
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3.2 Estimation of the Tail Index 

Several methods exist to estimate the tail index of a fat tailed distribution from empirical data. 

The most popular is the Hill estimator (Diebold, Schuerman, and Stroughair, 1998). To 

implement this procedure, the observed losses X are arranged in ascending order: 

nk21 XXXX LL >>>> . The tail index ξα 1=  then can be estimated as follows: 

( )
1

1k

k

1i

i XlnXln
k
1

k

−

+
=









−= ∑α) . (15) 

The function L(x) in (12) is usually approximated by a constant C. An estimator for C is 

(Embrechts, Klüppelberg, and Mikosch, 1997, p. 334): 

α))
1kk X

n
k

C += . (16) 

This leads to the following estimator for the tail probabilities and the p-quantile: 

( ) 1k
1k Xx,

x

X

n
k

pxF +
+ >






==

α))
  and (17) 

( )
α))
1

1k
1

p np

k
XxFx 








== +

− . (18) 

It can be shown that the Hill Estimator is consistent and asymptotically normal (Diebold, 

Schuerman, and Stroughair, 1998). 

The implementation of the estimation procedure requires to determine the threshold value kX , 

i.e. the sample size k, on which the tail estimator is based. It is well known that the estimation 

results are strongly influenced by the choice of k. Moreover, a trade-off exists: the more data are 

included in the estimation of the tail index α, the smaller the variance becomes. Unfortunately, 

the bias increases at the same time because the power function in (12) applies only to the tail of 

the distribution. In order to solve this problem, Danielsson et al. (2001) develop a bootstrap 

method for the determination of the sampling fraction k/n. The different steps of this iterative 

procedure are described in the appendix. 
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4 Application to Hog Production 

4.1 Model and Data 

Following Manfredo and Leuthold (2001), who investigate the market risks in US cattle feeding, 

we use the VaR approach to quantify the market risk in hog production under German market 

conditions. While the Common Agricultural Policy (CAP) dampens price fluctuations for many 

agricultural commodities in the EU, the hog market has proven to be very volatile. Our target is 

the determination of a 12-week VaR for three types of producers: 1) a specialized feeder pig 

producer, 2) a farmer who specializes in hog finishing and purchases feeder pigs, and 3) a 

farrow-to-finish operation. We assume that prices of feeder pigs and finished hogs are not fixed 

by forward contracts; rather feeder pigs and finished hogs are bought and sold at current spot 

market prices. The gross margin (cash flow) CF at time t associated with these production 

activities is defined as 

it

K

i
itt ZbPaCF ∑

=

−⋅=
1

. (19) 

Formally the gross margin can be considered as a portfolio consisting of a long-position (the 

product price P) and several short-positions (the factor prices Zi). Thus (5) can be applied to this 

margin. The portfolio weights a and bi now have to be interpreted as technical coefficients 

(slaughtering weight, fodder consumption etc.). Thereby we imply a fixed production 

technology, which is not unusual in risk management applications (cf. Manfredo and Leuthold 

(2001) or Kenyon and Clay (1997)). Empirical investigations of Odening and Musshoff (2002) 

indicate that the market risk in hog production in Germany is mainly caused by the prices of 

feeder pigs and finished hogs. Other items, e.g. fodder costs, have an impact on the level of the 

gross margins, but they do not contribute to the fluctuations of the cash flow. As mentioned 

above, prices for the most important fodder components are (still) stabilized by market 

intervention in the CAP framework. Therefore we do not include them in the following 

calculation. Due to this, the VaR calculation simplifies considerably. In what follows, we display 

the VaRs for the feeder pigs prices (the perspective of the specialized feeder pigs producer), for 

the finished hog prices (the perspective of the farrow-to-finish operation) and for the hog 

finishing margin (the perspective of the specialized hog producer who buys feeder pigs and sells 
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finished hogs). The weights of feeder pigs and finished hogs (slaughter weight) are assumed to 

be 20 kg and 80 kg (44 lbs and 176 lbs), respectively.  

Note that in a strict sense we do not display a Value-at-Risk, but rather a Cash-Flow-at-Risk 

(CFaR) (Dowd, 1998, p. 239 f.)4. Despite the formal analogy of both concepts, one should have 

in mind the differences when it comes to an economic interpretation of the figures: VaR 

quantifies the loss of value of an asset, whereas CFaR addresses a flow of money. The 

knowledge of a CFaR is presumably valuable in the context of risk-oriented, medium-term 

financial planning. However, conclusions about the financial endangerment of the farm should 

be drawn carefully, since the initial cash flow level, as well as the duration of the cash flow drop, 

should be taken into account. Experience shows that specialized livestock farms are able to 

endure losses if such a period does not persist too long and appropriate profits have been earned 

before. 

Our empirical analysis is based on time series of prices for finished hogs and feeder pigs 

published by the Zentrale Markt- und Preisberichtsstelle (ZMP), a German market reporting 

agency. The data consist of weekly price quotations which are reported by hog producers and 

slaughter houses in East Germany. The time series spans the period from January 1994 until 

October 2001, i.e. 405 observations are available. Prices are measured in Euro per kg live weight 

and slaughter weight for feeder pigs and finished hogs, respectively. The latter refer to an 

average meat quality insofar as prices for different grades are aggregated using the trading 

volumes as weights. Note that in the following empirical analysis price changes are used rather 

than the absolute prices5. 

4.2 Empirical results 

In line with the discussion in section 2.3, the first step in VaR calculation is to clarify what kind 

of distributions underlie the market factors, i.e. finished hog prices, feeder pig prices and the hog 

finishing margin. This task breaks down into two questions. First, should a conditional or an 

unconditional model be used, and second, are the respective distributions fat tailed or thin tailed? 

                                                             
4  Nevertheless we continue to speak of VaR (in a broader sense) below. 
5  In financial applications it is common to analyze log returns instead of absolute changes. Their advantage is to be independent 

of the price level. However, problems occur if values become negative. While this is impossible for prices it may happen to 
the hog finishing margin. A natural way to prevent this problem is to model the risky components of the margin, i.e. the input 
and output prices. While VCM and HS are predestinated for an analysis of various risky market factors, EVT is not, since it is 
essentially a univariate approach. 
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To answer the first question, a Lagrange Multiplier test is employed to test the presence of 

conditional heteroscedasticity (Greene 2000, p. 808). This test rejects the null hypothesis of 

homoscedasticity for the weekly changes of finished hog prices and of the hog finishing margin, 

therefore, a GARCH(1,1) model for all three time series is estimated6. The estimated parameter 

values are summarized in table 1. All estimated parameters are significant. The standardized 

residuals tt σε /
) indicate no autocorrelations on a 1% level of significance. This applies also to 

the squared standardized residuals with exception of the feeder pig price series. Thus the 

inclusion of further lags into the GARCH model does not appear necessary. Inserting the 

parameters in table 1 into (7) yields 1-week volatility forecasts. Next, the 1-week volatility 

forecasts are projected on a 12-week horizon. This is conducted with the square-root-rule (8) and 

alternatively with the Drost-Nijman formula (9). The results for the volatility of the finished hog 

price changes are represented in figure 2. The corresponding results for the volatility forecasts of 

the feeder pig prices and the hog finishing margin, which are not presented here, look very 

similar. 

Table 1: Parameters of the GARCH (1,1)-Models 

parameter price of feeder pigs price of finished hogs hog finishing margin 

ωω 0.0009** 

(5.71) 

0.0007** 

(3.79) 

0.8626* 

(1.81) 

δδ 0.7100** 

(6.24) 

0.4439** 

(4.22) 

0.1641** 

(4.24) 

ββ 0.1728** 

(4.26) 

0.2769** 

(2.34) 

0.7629** 

(12.21) 

* level of significance 95%     ** level of significance 99%,     t-values in parentheses 

Figure 2 confirms the theoretical considerations in section 2.4. The square-root-rule cannot be 

regarded as a suitable approximation for a correct time aggregation of the volatility in GARCH 

models. The actual fluctuations of the volatility are substantially smaller than shown by 

multiplication with the factor 12 . That means that VaR forecasts, that are based on this 

methodology, lead to a permanent overestimation and an underestimation of the true 12-week 

                                                             
6  We refrain from estimating a Bi-GARCH-model for the feeder pig prices and pig prices to estimate the volatility and the VaR 

of the hog finishing margin. Instead, a univariate GARCH model for the margin is estimated. This corresponds to the 
procedure that is used later for the EVT application. It takes into account that EVT at its present stage is only applicable to 
univariate distributions. 
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VaRs. The correctly determined fluctuation of the 12-week volatility appears so small that – in 

accordance with the arguments of Danielsson and de Vries (2000) – the subsequent application 

of EVT is based on unconditional distributions, regardless of the measurement of conditional 

heteroscedasticity in weekly price changes. 

Figure 2: Temporal aggregation of time varying volatilities (GARCH 1,1) 
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Next, we turn to the question whether the considered time series are fat tailed or not. This issue 

can be inspected by QQ-plots, which compare the quantiles of an empirical distribution and a 

theoretical reference distribution. If the data points are approximately located on a straight line, it 

can be assumed that the observed data follow the reference distribution. In figure 3 the normal 

distribution is chosen as a reference distribution. 

Figure 3 indicates a positive excess for the weekly changes of feeder pig prices and finished hog 

prices whereas the interpretation of the QQ-plot of the hog finishing margin is less clear. The 

realization of a Kolmogorov-Smirnoff goodness-of-fit test supports the conjecture that the 

analyzed series are not normally distributed. The null hypothesis is rejected on a 5% level for all 

three distributions. Finally, the Jarque-Bera-test, which summarizes deviations from the normal 

distribution with respect to skewness and kurtosis, provides further evidence about the non-

normality of the distribution. The critical value of the test statistic is 9.2 on a 1% level of 
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significance and is exceeded by the corresponding empirical values of the feeder pig prices 

(55.4), the pig prices (55.1) and the hog finishing margin (23.5). Thus the test results provide 

evidence that all distributions are fat tailed and justify the estimation of an extreme value 

distribution. 

Figure 3: QQ-plots for feeder pigs, finished hogs, hog finishing margin 
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 b) hog prices (1-week-differences) 
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 c) hog finishing margin (1-week-differences) 
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Application of the estimation procedure presented in section 3.2 is straightforward in principle, 

but the treatment of the hog finishing margin deserves a further comment. Two stochastic 

variables, the finished hog prices and the feeder pig prices, are involved in this case. Thus, the 

question arises how the EVT, which is designed for the estimation of univariate distributions, can 
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be adapted. Danielsson and De Vries (2000) describe two different approaches to apply EVT to a 

portfolio, namely post fitting and presampling. Post fitting is similar to Historical Simulation 

insofar as the returns of the different portfolio components are aggregated to give a univariate 

series of portfolio returns to which EVT can be applied. Correlations need not be estimated 

explicitly, but are implicitly assumed to be constant. Presampling, in contrast, is a multivariate 

approach. A tail estimation is carried out for each portfolio component and samples are drawn 

from the fitted distributions. A vector of portfolio returns is then calculated taking into account 

the sample covariance. Obviously post fitting is computationally much simpler and is preferred 

used here. 

In order to motivate the aforementioned bootstrap procedure to determine the sample fraction for 

the tail estimation, we present Hill-estimators based on different values of k (figure 4). 

Apparently the result strongly depends on the number of extreme values which are included into 

the estimation. The extreme value distributions depicted in figure 5 are already based on the 

optimized number of extreme values. The respective figures are 6 for the feeder pig prices, 9 for 

the finished pig prices, and 3 for the finishing margin. The results of VCM and HS are also 

depicted for comparative purposes. The estimated tail indices of the extreme value distributions 

for the 1-week differences of feeder pig prices and pig prices are 5.37 and 4.08, respectively. 

Due to the positive correlation of the price changes of finished hogs and feeder pigs, the 

fluctuations of the hog finishing margin are smaller than those of the two single series. This is 

reflected by a relatively large tail index of 7.23 and corresponds also to the previous QQ-plots. 
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Figure 4: Tail estimators for different sample fractions 
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Figure 5: Normal distribution, empirical distribution and extreme value distribution 
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The last step consists of extrapolating the 1-week VaRs derived from figure 5 to the target 

horizon of 12 weeks. In the case of HS and VCM this is done with the square-root-rule, i.e. via 

multiplication with the factor 3.464. In contrast, the quantiles of the extreme value distribution 

are projected with the alpha-root-rule, i.e. using the respective tail indices á. Table 2 contains the 

results for different confidence levels. To allow a better comparison, the values of the extreme 

value distributions are also depicted for a 95% confidence level. According to the proposal of 

Danielsson and De Vries (2000) theses values should be taken from HS, since they already lie to 

the right of the order statistics 1kX + . 

Table 2: 1- and 12-week VaRs for the three time series and for different confidence 
levels (95%, 99%, 99.9%) 

 feeder pigs finished hogs hog finishing margin  

confidence level 95.0% 99.0% 

Euro 

99.9% 95.0% 99.0% 

Euro 

99.9% 95.0% 99.0% 

Euro 

99.9% 

EVT          

1 week 0.130 0.176 0.270 0.088 0.131 0.230 6.786 8.476 11.653 

SE 0.012 0.005 0.085 0.006 0.009 0.058 1.034 0.203 1.862 

12 week 0.207 0.280 0.429 0.162 0.240 0.422 9.567 11.950 16.429 

HS          

1 week 0.104 0.182 - 0.077 0.128 - 5.358 8.303 - 

SE 0.439 1.001 - 0.877 0.995 - 0.366 0.501 - 

12 week 0.361 0.631 - 0.266 0.443 - 18.562 28.764 - 

VCM          

1 week 0.105 0.148 0.197 0.081 0.115 0.153 5.607 7.947 10.571 

SE 0.004 0.005 0.007 0.003 0.004 0.005 0.199 0.281 0.373 

12 week 0.362 0.514 0.684 0.282 0.400 0.532 19.422 27.531 36.620 

 

Compared to the EVT estimator, the VCM shows an underestimation of VaR for a short-term 

forecast. The underestimation, which increases with the confidence level, is a result of the 

assumed normality of the VCM and the actual leptokurtosis of the distributions. The 1-week 

VaR of the VCM for the feeder pigs, finished hogs, and hog finishing margin amounts to 0.197, 

0.153, and 10.571 Euro at the 99.9% level. That means, the probability that the price for feeder 

pigs drops from its current level more than 0.197 Euros (19.7 Cents) is less than 0.1%. The 
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respective figures of the EVT are 0.27, 0.230, and 11.653 Euro. The differences should be 

related to the average prices (margin) of 1.938, 1.399 and 73.192 Euro. 

HS and EVT differ only slightly at the 99% level. That means the distribution functions of the 

EVT and the HS intersect in that region (see figure 5). The VaR of the feeder pigs derived from 

HS is 0.182 Euro. This value is even higher than the corresponding EVT forecast which is 0.176 

Euro. At the 99.9% level, quantiles can not be determined with HS, because losses of this size 

did not occur during the observation period. 

Things appear completely different for the 12-week VaRs. HS and the VCM overestimate the 

medium-term VaRs relative to EVT. For example, the 95% quantile for the feeder pigs, finished 

hogs and hog finishing margin derived from the extreme value distribution amounts to 0.207, 

0.162, and 9.567 Euro respectively, while the VCM display values of 0.362, 0.282, and 19.422 

Euro, respectively. The corresponding values of the HS are 0.361, 0.266, and 18.562 Euro, 

respectively. Obviously, the short-term underestimation of the VaRs by HS and VCM is 

overcompensated by a too conservative time scaling via the square-root-rule.7 This bias becomes 

larger with increasing time horizon. 

Table 2 further reports asymptotic standard errors of the estimated quantiles. The VCM 

seemingly shows the smallest estimation error. Some caution is necessary when interpreting the 

figures. The standard error (SE) of the VCM is calculated according to: 

( ) ( ) Pp cnx̂ 212SE −= σ  (20) 

where px̂  denotes the estimated p-quantile, Pc  is the p-quantile of the standard normal 

distribution and n denotes the numbers of observations. However, using (20) is only correct in 

case of normally distributed random variables. Since the normality assumption was rejected by 

the data, the displayed standard errors are incorrect as well. Calculation of the standard errors of 

the HS and the EVT is based on the expressions given in Jorion (1998, p. 99) and Danielsson and 

de Vries (1997). The figures in table 2 highlight the aforementioned pitfall of HS when it comes 

to an estimation of extreme quantiles. The standard errors of HS are relatively large for the given 

sample size of 405 observations. In this respect EVT offers a better alternative. 

                                                             
7  Mc Neil and Frey (2000) criticize the forecast applied here that essentially replaces the square-root-rule by an alpha-root-rule. 

They favor a two-stage procedure, which considers conditional heteroscedasticity in a first stage via GARCH estimation, and 
applies EVT to the residuals of the conditional estimation model in a second stage. 
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Usually some kind of validation is conducted subsequent to the VaR estimation. An out-of-

sample prediction (backtesting) is a widespread validation technique. For that purpose the 

sample period is divided into an estimation period and a forecast period. Comparing theoretically 

expected and actually observed VaR violations occurring within the forecast period allows to 

validate competing models statistically (cf. Kupciec, 1995). However, such a validation is not 

possible in this application due to the relatively short observation period of the price series. An 

overshoot of a 99%-VaR would occur only once during 100 periods. In our application, such an 

event is expected to happen once within 100·12 weeks, i.e. once within 23 years. The 

impossibility of a model validation is not specific to our application. Rather it is an inevitable 

consequence of switching from a short-term to a long-term forecast horizon. Things are 

complicated by the fact that an EVT estimation requires excessive data. 

5 Discussion and conclusions 

The previous section exemplifies that the EVT can be applied to problems in agribusiness. For 

these specific agribusiness applications we found that: 

1. Short-term VaR is underestimated in particular by the VCM when the return distributions are leptokurtic. 

2. Using the alpha-root-rule instead of the common square-root-rule leads to a substantially smaller VaR for 

longer forecast horizons. 

3. The accuracy of the estimation (expressed by asymptotic standard errors) increases compared to HS. 

In considering the validity and the economic implications of these findings, as mentioned above, 

we have no direct statistical proof that EVT is superior to VCM and HS. Our assessment is rather 

based on theoretical arguments, namely the inappropriateness of VCM in case of nonnormal 

distributions and the statistical weakness of HS in tail estimation. Two things interfere with the 

generalization of our results. First, we cannot ensure that we have identified the best benchmark 

for the comparison of EVT and traditional VaR methods. In particular, the VCM was based on a 

rather simple volatility estimator, namely a long-run historical average. Manfredo and Leuthold 

(2001) consider several other estimators, amongst them exponentially weighted averages and 

implied volatilities. Second, it should be recalled that the EVT estimator is just an approximation 

for an unknown distribution. The quality of this approximation improves the more one moves 

towards the tails of the distribution, but it is impossible to specify a definite quantile where EVT 

becomes superior. As a rule of thumb some authors state that EVT should be used for estimating 



23 

quantiles greater or equal than 99% (cf. Danielsson, Hartmann, and de Vries, 1998). Hence we 

suggest further simulation experiments to learn more about the performance and the statistical 

properties of the different methods. 

Another issue is the economic value of the information which is displayed by alternative VaR 

estimators. Opposed to financial institutions where VaR determines minimum capital 

requirements via the Basle accord8, the implications of a VaR forecast for risk management are 

less clear in non financial institutions such as farms. In our application VaR captures the 

maximal drop of important cash flow determinants (i.e. output and input prices). Changes of 

these market factors directly translate into changes of farm revenues. However, farm revenues 

depend on several other factors and therefore it is difficult to draw conclusions about the 

liquidity of the farm. For example, farms may have other cash generating activities than solely 

hog production. Cash outflows like debt service or wage payments will also differ between 

farms. Moreover, it seems necessary to include liquidity reserves into the analysis that have been 

generated during periods of high prices. Accordingly, the reported VaR forecasts should be 

embedded in a more comprehensive cash flow budget of the farm. Despite the difficulties in 

interpreting the VaR forecasts, we believe that it is important neither to overestimate nor to 

underestimate these values. For a given risk attitude, an overestimation of VaR will induce costly 

but unnecessary measures of risk reduction, e.g. holding excessive cash reserves. Reporting too 

high VaR values may also deteriorate the bargaining position of farmers who ask for debt capital. 

These examples highlight the relevance of our finding, that traditional methods tend to 

overestimate long-term VaR forecasts in the non iid case. 

Finally some disadvantages of EVT should be mentioned. One drawback is that EVT is basically 

designed for the analysis of univariate distributions. Hence the primary advantage of VaR of 

being able to consider many risky market factors and to model their joint stochastic structure in a 

bottom-up approach is eroded. Another disadvantage is the increase of the computational burden 

of EVT compared to VCM or to HS. The reason for this is not the tail estimation itself, but the 

bootstrap procedure, which turned out to be necessary for the determination of an optimal sample 

fraction. However, this disadvantage is weakened, since a tail index estimation will be executed 

less frequently compared with short-term financial applications, where a permanent updating of 

VaR forecasts is required when new price information becomes available.  
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To summarize, the benefits of displaying extreme quantiles depend on the specific problem. 

Apparently, the informational needs concerning risk differ largely e.g. between a hog producer, a 

broker trading with hog futures, and an insurance company insuring against animal diseases. In 

some cases the inclusion of additional sources of risk seems more important than to push the 

confidence level of VaR from 95% to 99.9%. For example, the production risks emanating from 

foot and mouth disease or BSE for a individual producer, are not echoed by aggregated market 

prices. However, if a calculation of extreme quantiles (e.g. 99% or higher) appears desirable then 

EVT should be used as a supplement. Additional cost of computation are overruled by a higher 

accuracy of the tail estimates as well as by significant differences in the temporal aggregation of 

VaR whenever leptokurtic distributions are involved.  
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7 Appendix 

Bootstrap method for the determination of the sampling fraction k/n 

A solution to the determination of the sampling fraction k/n is given by means of a bootstrap 

method, as suggested by Danielsson et al. (2001). First resamples { }*
n

*
1

*
n 11

X,...,XN =  of 

predetermined size n1<n are drawn from the data set { }
1n1n X,...,XN =  with replacement. For 

any k1 the asymptotic mean square error (AMSE) ( )11 k,nQ  is calculated: 
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Then find ( )1
*

0,1 nk , i.e. the value of k1, which minimizes the AMSE (A1): 

( ) =1
*

0,1 nk argmin ( )11 k,nQ  (A4) 

A second step completely analogous to the first one but with a smaller sample size ( ) nnn 2
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This allows to calculate the reciprocal tail index estimator: 
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This estimation procedure for k depends on two parameters, the number of bootstrap resamples, 

l, and the sample size, n1. The number of resamples is in general determined by the available 

computational facilities. The application presented in section 4 utilizes 10,000 repetitions giving 
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very stable results. Evaluation and optimization of n1, necessitates a further step. Calculate the 

ratio  

( ) ( )( )
( )*

0,22

2*
0,11

1 k,nQ

k,nQ
nR =  (A7) 

and determine =*
1n argmin ( )1nR  numerically. If n* differs from the initial choice n1, the 

previous steps should be repeated. Remember that the quantile estimates derived from EVT are 

only valid for the tails of the profit-and-loss distribution. To allow inferences about quantiles in 

the interior of the distribution, Danielsson and de Vries (2000) propose to link the tail estimator 

with the empirical distribution function at the threshold 1kX + . Thus the particular advantages of 

the EVT and the HS are combined. 


